下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、5.2.2直线平行的条件(第2课时)直线平行的条件(二) 教学目标 1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力. 2.经历分析题意,说理过程,能灵活地选用直线平行的规定方法进行说理. 重点、难点 重点:直线平行的条件的应用. 难点:选取适当判定直线平行的方法进行说理是重点也是难点. 教学过程 一、画图实践活动 1.回忆怎样用移动三角尺的方法画两条平行线的, 其中直尺和三角尺的作用是什么? 师生交流后得出:直尺与已知直线构成等于三角尺度数的角1, 确定第三条直线即截线的位置,移动三角尺再形成一个与1相等的同位角2. 2.教师提出问题:学习了平行线后,
2、大家还能想出过一点画一条直线的平行线的新方法吗? 学生思考、小组交流,教师根据学生的想法在全班交流每种画法的方法步骤、 定义.如果学生没有想到的,教师可按课本P36李强、张明、王玲同学的做法,组织学生分析做法要点和合理性,正确性. 对于李强画法,教师使学生明白,画过点P的直线b是确定直线b的位置和确定1的大小,其次点P为顶点,作与1相等的同位角2,从而画出过点P的直线c, 根据平行判定1,可知ca. 对于张明做法,学生应明确本做法就画一个一边在直线a的长方形PQRS, 由于长方形的对边平行,从而ba. 对于王玲做法,学生应明确第一次折纸是过点P作直线a的垂线b, 第二次折纸是过点P作直线b的垂
3、线c,至于ac的理由在例题讲解中说明. 3.教师再提出问题:你还有其他方法吗?动手试一试与同学们交流一下. 教师发现学生新的做法,组织学生交流,并归纳新的方法主要是: (1)用尺规画过点P的与1相等的内错角3,达到作ca; (2)再尺规画有别于李强的其他对同位角,达到作ca; (3)用直尺、三角尺画出与王玲一样的线条,达到作ca. 在解释学生做法的合理性时,要求学生能利用“同位角相等,两直线平行”或“内错角相等,两直线平行”去说明. 二、例题讲解 例:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么? 教师:这个问题的研究,就是回答了王玲折线方法的合理性. 首先王玲对
4、折直线a,使折线过点P,于是把一个平角分成两个相等的1、2, 因为1+2=180,所以1=2=90. 其次王玲再对折折线b,使折线c过点P,很显然3=90. 由垂直定义,可知ab,cb. 以上分析使学生明了垂直与直角总联系在一起.至于要判定两条直线是否平行,先考虑学过哪些判定平行线的方法,题中的条件与某种判定方法的条件是否相同? 学生先口述判断与理由,教师纠正.并规范板书两步推理过程: 如课本P17图5.2-10. 因为ba,ca, 所以1=2=90, 从而bc. 教师说明:这个道理过程有两个因为所以 . 第一个“因为”“所以”是根据垂直定义,第二个只写出“所以”的内容bc,中间省略一个“因为
5、”的内容,这个内容就是第一个“所以”中的1=2.这样处理是使说理表达更简练, 第二个“因为”、“所以”是根据同位角相等,两直线平行. 例题讲解后,师提问:你还能利用其他方法说明bc吗? 教师鼓励学生模仿课本方法用图(1)内错角相等的方法写出理由,用图(2) 同旁内角互补的方法写出理由. (1) (2) 如果1,2不是同位角,也不是内错角、同旁内角,如图(3), 教师启发学生用化归思想将它转化为已知问题来解决,并且有条理地陈述理由: 如图(3), 因为ab,ca, 所以1=90,2=90. 因为3=1=90, 从而bc(同位角相等,两直线平行). (3) 三、巩固练习 1.课本P18思考,教师要
6、求学生说出尽可能多的判别方法和理由. 2.已知:如图,直线a、b被直线c所截,且1+2=180,那么直线a与b平行吗? 为什么? 四、作业 1.课本作业P19.5,6,8,9,10,12. 2.补充作业:一、填空题.1.如图,点E在CD上,点F在BA上,G是AD延长线上一点. (1)若A=1,则可判断_,因为_. (2)若1=_,则可判断AGBC,因为_. (3)若2+_=180,则可判断CDAB,因为_. (第1题) (第2题)2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角ABC=72,则另一个拐角BCD=_时,这个管道符合要求.二、选择题.1.如图,下列判断不正确的
7、是( ) A.因为1=4,所以DEAB B.因为2=3,所以ABEC C.因为5=A,所以ABDE D.因为ADE+BED=180,所以ADBE2.如图,直线AB、CD被直线EF所截,使1=290,则( ) A.2=4 B.1=4 C.2=3 D.3=4三、解答题.1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.2.已知,如图2,点B在AC上,BDBE,1+C=90,问射线CF与BD平行吗?试用两种方法说明理由.答案:一、1.(1)CDAB, 同位角相等,两直线平行 (2)C,内错角相等, 两直线平行 (2)EFB,同旁内角互补,两直线平行 2.108 二、1.C 2.D 三、1.把四边形纸某条边分两次折叠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 染色体病检测指南及规范
- 企业年金管理效率提升研究
- 汽车露营地装修施工合同范本格式
- 供应链协同管理方案
- 科技清水池防水施工合同
- 电力公司总经理劳动合同范例
- 旅游管理专业教师聘用合同
- 渔业公司电工招聘及维护协议
- 医疗捐赠物品使用准则
- 健康管理中心健身房租赁协议
- 音乐家海顿课件
- 轮机工程专业职业生涯规划
- 中职教育二年级上学期电子与信息《路由基础-动态路由协议OSPF原理与配置》微教案
- 起重机安装安全协议书
- 早产临床防治指南(2024版)解读
- 学堂乐歌 说课课件-2023-2024学年高中音乐人音版(2019) 必修 音乐鉴赏
- VDA6.3-2023过程审核检查表
- (高清版)JTG 2120-2020 公路工程结构可靠性设计统一标准
- 2024年水平定向钻租赁合同
- 食材配送投标方案技术标
- 农村气代煤工程技术规程
评论
0/150
提交评论