数学:1.1.1算法的概念.ppt_第1页
数学:1.1.1算法的概念.ppt_第2页
数学:1.1.1算法的概念.ppt_第3页
数学:1.1.1算法的概念.ppt_第4页
数学:1.1.1算法的概念.ppt_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.1算法与程序框图,1.1.1 算法的概念,第一步:-2得: 5y=3 ,第二步: 解得:,第三步: 将 代入,解得 .,对于一般的二元一次方程组 其中 也可以按照上述步骤求解.,第四步:得到方程组的解为,第四步:得到方程组的解为,算法的概念和特征,特征:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的. (2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可. (3)逻辑性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误

2、,才能完成问题. (4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法. (5)普遍性:很多具体的问题,都可以设计合理的算法去解决。,概念:通常指按照一定规则解决某一类问题的明确的和有限的步骤。(现在,算法通常可以编成程序,让计算机执行并解决问题。),例1、设计一个算法,判断7是否为质数,第一步,用2除7,得到余数1,所以2不能整除7.,第四步,用5除7,得到余数2,所以5不能整除7.,第五步,用6除7,得到余数1,所以6不能整除7.,第二步,用3除7,得到余数1,所以3不能整除7.,第三步,用4除7,得到余数3,所以4不能整除7.,因此,7是质数.,类似地,可写出

3、“判断35是否为质数”的算法:,第一步,用2除35,得到余数1,所以2不能整除35.,第二步,用3除35,得到余数2,所以3不能整除35.,第三步,用4除35,得到余数3,所以4不能整除35.,第四步,用5除35,得到余数0,所以5能整除35.,因此,35不是质数.,例2、任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判断.,解:算法:第一步:判断n是否等于2.若n=2,则n是质数;若n2,则执行第二步.第二步:依次从2(n-1)检验是不是n的因数,即整除n的数.若有这样的数, 则n不是质数;若没有这样的数,则n是质数.,分析:(1)质数是只能被1和自身整除的大于1的整数.

4、(2)要判断一个大于1的整数n是否为质数,只要根据质数的定义,用比这个整数小的数去除n,如果它只能被1和本身整除,而不能被其它整数整除,则这个数便是质数.,点评:本算法是用自然语言的形式描述的.设计算法一定要做到以下要求:(1)写出的算法必须能解决一类问题,并且能够重复使用.(2)要使算法尽量简单、步骤尽量少.(3)要保证算法正确,且计算机能够执行.,若是,则m 为所求;,例3:用二分法设计一个求方程x2-2=0的近似根的算法.,算法分析:,设所求近似根与精确解的差的绝对值不超过=0.005.,第一步:令f(x)=x2-2.,因为f(1)0,所以设a=1,b=2.,第二步:令,判断f(m)是否

5、为0.,第四步:判断|a-b|是否成立?若是,则a或b为满足条件的近似根;若否,则返回第二步.,点评: (1)上述算法也是求 的近似值的算法.,(2)与一般的解决问题的过程比较,算法有以下特征: 设计一个具体问题的算法时,与过去熟悉地解数学题的过程有直接的联系,但这个过程必须被分解成若干个明确的步骤,而且这些步骤必须是有效的. 算法要“面面俱到”,不能省略任何一个细小的步骤,只有这样,才能在人设计出算法后,把具体的执行过程交给计算机完成.,计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.,练

6、习一:任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.,算法分析:,第一步:输入任意一个正实数r; 第二步:计算以r为半径的圆的面积S=r2; 第三步:输出圆的面积.,练习二:任意给定一个大于1的正整数n,设计一个算法求出n的所有因数.,算法分析:,第一步:依次从2(n-1)为除数去除n,判断余数是否为0,若是,则是n的因数;若不是,则不是n的因数. 第二步:在n的因数中加入1和n; 第三步:输出n的所有因数.,练习三:为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分,每立方米收费1.5元,并加收0.4元的城市污水处理费,请你写出某户居民每月应交纳的水费y(元)与用水量x(m3)之间的函数关系,然后设计一个求该函数值的算法.,解:y与x之间的函数关系为:,(当0 x7时) (当x7时),解:y与x之间的函数关系为:,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论