版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,第十节,一、最值定理,二、介值定理,*三、一致连续性,闭区间上连续函数的性质,第一章,注意: 若函数在开区间上连续,结论不一定成立 .,一、最值定理,定理1.在闭区间上连续的函数,即: 设,则,使,值和最小值.,或在闭区间内有间断,在该区间上一定有最大,(证明略),点 ,例如,无最大值和最小值,也无最大值和最小值,又如,二、介值定理,由定理 1 可知有,证: 设,上有界 .,定理2. ( 零点定理 ),至少有一点,且,使,( 证明略 ),推论 在闭区间上连续的函数在该区间上有界.,定理3. ( 介值定理 ),设,且,则对 A 与 B 之间的任一数 C ,一点,证: 作辅助函数,则,且,故由零
2、点定理知, 至少有一点,使,即,推论: 在闭区间上的连续函数,使,至少有,必取得介于最小值与,最大值之间的任何值 .,例. 证明方程,一个根 .,证: 显然,又,故据零点定理, 至少存在一点,使,即,说明:,内必有方程的根 ;,取,的中点,内必有方程的根 ;,可用此法求近似根.,二分法,在区间,内至少有,则,则,内容小结,*三. 一致连续性,已知函数,在区间 I 上连续,即:,一般情形,就引出,了一致连续的概念 .,定义:,对任意的,都有,在 I 上一致连续 .,显然:,例如,但不一致连续 .,因为,取点,则,可以任意小,但,这说明,在( 0 , 1 上不一致连续 .,定理4.,上一致连续.,(证明略),思考: P74 题 *7,提示:,设,存在,作辅助函数,显然,内容小结,在,上达到最大值与最小值;,上可取最大与最小值之间的任何值;,4. 当,时,使,必存在,上有界;,在,在,1. 任给一张面积为 A 的纸片(如图),证明必可将它,思考与练习,一刀剪为面积相等的两片.,提示:,建立坐标系如图.,则面积函数,因,故由介值定理可知:,则,证明至少存在,使,提示: 令,则,易证,2. 设,作业 P74 (习题110) 2 ; 3; 5,一点,习题课,备用题,至少有一个不超过 4 的,证:,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 利率管理暂行规定范文(2篇)
- 保卫部消防安全职责(2篇)
- 学校校园文化建设三年发展规划(2024.3-2027.3)
- 2024年小学生珍爱生命演讲稿模版(3篇)
- 治安员考核细则(2篇)
- 小学经典诵读活动实施方案(3篇)
- 2024年中学校本培训计划样本(2篇)
- 2024年爱岗敬业演讲稿:我在为谁工作范文(2篇)
- 环卫车辆车辆安全管理制度样本(3篇)
- 广告策划方案(5篇)
- 2024版劳动合同合同范本
- 古希腊文明智慧树知到期末考试答案章节答案2024年复旦大学
- 劳务合同不续期通知函
- 校园周边安全风险评估报告
- 2024年04月山西医科大学第二医院招考聘用42人笔试历年典型考题及考点研判与答案解析
- 印刷品退货处理协议
- 2024年中国邮政集团有限公司校园招聘考试试题参考答案
- DZ∕T 0258-2014 多目标区域地球化学调查规范(1:250000)(正式版)
- 消防工作协作与配合总结
- 《新疆工程勘察设计计费导则(2022版)》
- 历史与当代珠宝设计风格的传承与演变
评论
0/150
提交评论