




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 4 章 抽样与抽样分布,4.1 常用的抽样方法 4.2 抽样分布 4.3 中心极限定理的应用,学习目标,了解抽样的概率抽样方法 理解抽样分布的意义 了解抽样分布的形成过程 理解中心极限定理 理解抽样分布的性质,4.1 常用的抽样方法,一、简单随机抽样 二、分层抽样 三、系统抽样 四、整群抽样,抽样方法,概率抽样(probability sampling),根据一个已知的概率来抽取样本单位,也称随机抽样 特点 按一定的概率以随机原则抽取样本 抽取样本时使每个单位都有一定的机会被抽中 每个单位被抽中的概率是已知的,或是可以计算出来的 当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的
2、概率,简单随机抽样(simple random sampling),从总体N个单位中随机地抽取n个单位作为样本,使得每一个容量为样本都有相同的机会(概率)被抽中 抽取元素的具体方法有重复抽样和不重复抽样 特点 简单、直观,在抽样框完整时,可直接从中抽取样本 用样本统计量对目标量进行估计比较方便 局限性 当N很大时,不易构造抽样框 抽出的单位很分散,给实施调查增加了困难 没有利用其他辅助信息以提高估计的效率,分层抽样(stratified sampling),将总体单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本 优点 保证样本的结构与总体的结构比较相近,从而提高估计
3、的精度 组织实施调查方便 既可以对总体参数进行估计,也可以对各层的目标量进行估计,系统抽样(systematic sampling),将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范围内随机地抽取一个单位作为初始单位,然后按事先规定好的规则确定其他样本单位 先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k等单位 优点:操作简便,可提高估计的精度 缺点:对估计量方差的估计比较困难,整群抽样(cluster sampling),将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查 特点 抽样时只需群的抽样框,可简化工作量 调查
4、的地点相对集中,节省调查费用,方便调查的实施 缺点是估计的精度较差,4.2 抽样分布与中心极限定理,一、抽样分布的概念 二、样本均值抽样分布的形式 三、样本均值抽样分布的特征 四、中心极限定理,抽样分布的概念,样本统计量的概率分布,是一种理论分布 在重复选取容量为n的样本时,由该统计量的所有可能取值形成的相对频数分布 随机变量是 样本统计量 样本均值, 样本比例,样本方差等 结果来自容量相同的所有可能样本 提供了样本统计量长远而稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据,抽样分布 (sampling distribution),抽样分布的形成过程 (sampling dis
5、tribution),样本均值的抽样分布,在重复选取容量为n的样本时,由样本均值的所有可能取值形成的相对频数分布 一种理论概率分布 推断总体均值的理论基础,样本均值的抽样分布,样本均值的抽样分布(例题分析),【例】设一个总体,含有4个元素(个体) ,即总体单位数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总体的均值、方差及分布如下,均值和方差,样本均值的抽样分布 (例题分析), 现从总体中抽取n2的简单随机样本,在重复抽样条件下,共有42=16个样本。所有样本的结果为,样本均值的抽样分布 (例题分析), 计算出各样本的均值,如下表。并给出样本均值的抽样分布,样本均值的分布
6、与总体分布的比较 (例题分析), = 2.5 2 =1.25,总体分布,中心极限定理,样本均值的抽样分布与中心极限定理,当总体服从正态分布N(,2)时,来自该总体的所有容量为n的样本的均值x也服从正态分布,x 的数学期望为,方差为2/n。即xN(,2/n),中心极限定理(central limit theorem),中心极限定理:设从均值为,方差为 2的一个任意总体中抽取容量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为、方差为2/n的正态分布,中心极限定理 (central limit theorem),x 的分布趋于正态分布的过程,样本均值的数学期望 样本均值的方差 重复抽样 不重复抽样,样本均值的抽样分布(数学期望与方差),样本均值的抽样分布(数学期望与方差),比较及结论:1. 样本均值的均值(数学期望) 等于总体均值 2. 样本均值的方差等于总体方差的1/n,抽样分布与总体分布的关系,总体分布,正态分布,非正态分布,大样本,小样本,正态分布,正态分布,非正态分布,4.3 抽样分布的性质 无偏性与最小方差,无偏性(unbiasedness),无偏性:估计量抽样分布的数学期望等于被 估计的总体参数,有效性(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45219-2025危险货物自反应物质和有机过氧化物爆燃试验方法
- 制作生意合同范本
- 2025年天津年货运从业资格证模拟考试
- 买装修材料合同范本
- 与机关单位合作合同范例
- 村级修桥合同范本
- 产品研发定制合同范本
- 信息咨询收费合同范本
- 伙合合同范本
- 劳动合同范本 银川
- 2024智慧城市数据分类标准规范
- Linux系统管理与服务器配置-基于CentOS 7(第2版) 课件 第1章CentOS Linux 7系统的安装与介绍
- 新目标英语中考一轮教材梳理复习教案
- 冀教版二年级下册科学全册教学设计及教学计划
- 综合实践项目 制作细胞模型 教学设计-2024-2025学年人教版生物七年级上册
- 青岛版二年级数学下册课程纲要
- 光伏电气设备试验方案
- 经济法律法规基础知识单选题100道及答案
- 新苏教版三年级科学下册全册课件【全套】
- 2024-2030年中国精细化工行业发展分析及发展前景与投资研究报告
- 2024至2030年中国非标自动化行业需求领域与供需平衡预测分析报告
评论
0/150
提交评论