版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、26.1.2反比例函数的图象和性质1,知识回顾,你还记得一次函数的图象与性质吗?,一次函数y=kx+b(k0)的图象是一条直线,称直线y=kx+b.,y随x的增大而增大;,y随x的增大而减小.,当k0时,当k0时,情境引入,反比例函数的图象又会是什么样子呢?,你还记得作函数图象的一般步骤吗?,用图象法表示函数关系时,首先在自变量的取值范围内取一些值,列表,描点,连线(按自变量从小到大的顺序,用一条平滑的曲线连接起来).,新知探究,例2画出反比例函数 和 的图象。,解:列表表示几组x与y的对应值,描点连线:以表中各对对应值为坐标,描出各点,并用平滑的曲线顺次连接这些点,就得到这两个函数的图象。,
2、新知探究,思考,观察反比例函数的图象,回答下面问题:,1、每个函数的图象分别位于哪些象限? 2、在每个象限内随着x的增大,y如何变化?你能由它 们的解析式说明理由吗? 3、对于反比例函数 ,考虑问题1、2, 你能得出同样的结论吗?,新知探究,一般地,当k0时,我们可以发现反比例函数 1、图象分别为于一、三象限: 2、在每个象限内,y随x的增大而减小。,那么,当k0时,反比例函数的图象和性质又 是怎样的呢?,新知探究,一般地,当k0时,我们可以发现反比例函数 1、图象分别为于二、四象限: 2、在每个象限内,y随x的增大而增大。,知识梳理,一般地,反比例函数具有以下性质: 1、当k0时,图象分别为
3、于一、三象限: 在每个象限内,y随x的增大而减小。,2、当k0时图象分别为于二、四象限: 在每个象限内,y随x的增大而增大。,1、请指出下面的图像中那一个是反比例函数的图像,随堂练习,随堂练习,(A)y=5x (B)y=2x+3 (C) (D),2、如图,这是下列四个函数中哪一个函数的图象,随堂练习,(1)函数 的图象在第_象限, 在每一象限内,y 随x 的增大而_. (2)函数 的图象在第_象限, 在每一象限内,y 随x 的增大而_. (3)函数 ,当x0时,图象在第_象限, y随x 的增大而_.,3、认真填一填,随堂练习,4、已知反比例函数 若函数的图象位于第一、三象限, 则k_; 若在每一象限内,y随x增大而增大, 则k_.,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全注射课件 讲课
- 朗培教育培训心得体会
- 二年级下语文微课知识课件
- 小儿DDH手术配合
- 脑梗塞的治疗与护理
- 幼儿园儿歌春天课件
- 《RNA基本操作技术》课件
- 烤鱼课件教学课件
- 《景区网络营销方案》课件
- 四川方言大全
- 《安全管理人员职责》课件
- 4-10 小径管透照技术与工艺要求
- 海尔跨国并购GE家电财务绩效分析及启示
- 增强安全防范意识提高自我保护能力
- 陪诊服务商业计划书
- 2024北京海淀区初三(上)期末英语试卷和答案
- 空调安装专项安全施工方案
- 精神科临床教学查房课件
- 家庭病床护理培训护士提供家庭病床护理服务的技巧
- 2023年全国社会保障基金理事会招聘18人笔试参考题库(共500题)答案详解版
- 2023年新版心肺复苏指南
评论
0/150
提交评论