




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四讲 差分方程方法与应用 模型举例,差分方程建模,处理动态的离散型的问题,处理对象虽然涉及的变量(如时间)是连续的,但是从建模的目的考虑,把连续变量离散化更为合适,将连续变量作离散化处理,从而将连续模型(微分方程)化为离散型(差分方程)问题,1 市场经济中的蛛网模型 2 银行复利问题 3 抵押贷款买房问题 4 差分形式的阻滞增长模型 5 减肥计划节食与运动 6 按年龄分组的种群增长 7 差分基础知识,1 蛛 网 模 型,xk第k时段商品数量;yk第k时段商品价格,消费者的需求关系,生产者的供应关系,减函数,增函数,f与g的交点P0(x0,y0) 平衡点,一旦xk=x0,则yk=y0,xk+1
2、,xk+2,=x0, yk+1,yk+2, =y0,设x1偏离x0,x1,P0是稳定平衡点,P0是不稳定平衡点,曲线斜率,蛛 网 模 型,在P0点附近用直线近似曲线,P0稳定,P0不稳定,方 程 模 型,方程模型与蛛网模型的一致, 商品数量减少1单位, 价格上涨幅度, 价格上涨1单位, (下时段)供应的增量,考察 , 的含义, 消费者对需求的敏感程度, 生产者对价格的敏感程度,小, 有利于经济稳定, 小, 有利于经济稳定,结果解释,xk第k时段商品数量;yk第k时段商品价格,结果解释,经济不稳定时政府的干预办法,1. 使 尽量小,如 =0,以行政手段控制价格不变,2. 使 尽量小,如 =0,靠
3、经济实力控制数量不变,结果解释,模型的推广,生产者根据当前时段和前一时段的价格决定下一时段的产量。,生产者管理水平提高,设供应函数为,需求函数不变,二阶线性常系数差分方程,x0为平衡点,研究平衡点稳定,即k, xkx0的条件,方程通解,(c1, c2由初始条件确定),1, 2特征根,即方程 的根,平衡点稳定,即k, xkx0的条件:,平衡点稳定条件,比原来的条件 放宽了,模型的推广,2 银行复利问题,背景,所付利息一年内复合n次,即把一年分n个相等的时间段,而所付利息为每一时间段的未尾 .,给出一个可以预测在任意给定时间的帐目余额,分析,帐目余额与时间直接相关,而时间是离散的,本期结束时的总存
4、款等于前一时期余下的本利,及本利得到的利息与第本期内新存入的存款之和,任何时候都可以存款,模型假设,1. 储蓄的年利率为 r,2. 任何时候都可以存款,但存款利息只从下一时期开始计算,如时间段开始第一天的存款即开始计算利息,t期结束时的总存款,记号,第t期内的新存款,模 型,注:上式中n=2时,相应于半年的复利,而n=365则是相应于逐日计算的复利,3 抵押贷款买房问题,背景,每户人家都希望有一套属于自己的住房,但又没有足够的资金一次买下。这就产生了贷款买房问题。某新婚夫妇急需一套属于自己的住房。他们看到一则理想的房产广告:“名流花园之高尚住宅公寓,供工薪阶层选择。一次性付款优惠价40.2万元
5、。若不能一次性付款也没关系,只付首期款为15万元,其余每月1977.04元等额偿还,15年还清。(公积金贷款月利息为3.675)。,问题,公寓原来价多少?每月等额付款如何算出来?,假设,贷款期限内利率不变,银行利息按复利计算,记号,A(元):贷款额(本金),n(月):货款期限,r :月利率,B(元) :月均还款额,Ck:第k个月还款后的欠款,模型,求解,代入n=180、 r=0.003675、 B=1977.04,结果: A=260000(元),一次性优惠价9.8折,还款总额 ? 利息负担总额 ?,4 差分形式的阻滞增长模型,连续形式的阻滞增长模型 (Logistic模型),t, xN, x=
6、N是稳定平衡点(与r大小无关),离散形式,x(t) 某种群 t 时刻的数量(人口),yk 某种群第k代的数量(人口),若yk=N, 则yk+1,yk+2,=N,讨论平衡点的稳定性,即k, ykN ?,y*=N 是平衡点,离散形式阻滞增长模型的平衡点及其稳定性,一阶(非线性)差分方程,(1)的平衡点y*=N,讨论 x* 的稳定性,变量代换,(1)的平衡点 x*代数方程 x=f(x)的根,稳定性判断,(1)的近似线性方程,x*也是(2)的平衡点,x*是(2)和(1)的稳定平衡点,x*是(2)和(1)的不稳定平衡点,补充知识,的平衡点及其稳定性,平衡点,稳定性,另一平衡点为 x=0,不稳定,的平衡点
7、及其稳定性,初值 x0=0.2,数值计算结果,b 3, x,b=3.3, x两个极限点,b=3.45, x4个极限点,b=3.55, x8个极限点,倍周期收敛x*不稳定情况的进一步讨论,单周期不收敛,2倍周期收敛,(*)的平衡点,x*不稳定,研究x1*, x2*的稳定性,倍周期收敛,的稳定性,倍周期收敛的进一步讨论,出现4个收敛子序列 x4k, x4k+1, x4k+2, x4k+3,平衡点及其稳定性需研究,时有4个稳定平衡点,2n倍周期收敛, n=1,2,bn 2n倍周期收敛的上界,b0=3, b1=3.449, b2=3.544, ,n, bn3.57,b3.57, 不存在任何收敛子序列,
8、的收敛、分岔及混沌现象,b,5 减肥计划节食与运动,背景,多数减肥食品达不到减肥目标,或不能维持,通过控制饮食和适当的运动,在不伤害身体的前提下,达到减轻体重并维持下去的目标,分析,体重变化由体内能量守恒破坏引起,饮食(吸收热量)引起体重增加,代谢和运动(消耗热量)引起体重减少,体重指数BMI=w(kg)/l2(m2). 18.525 超重; BMI30 肥胖.,模型假设,1)体重增加正比于吸收的热量每8000千卡增加体重1千克;,2)代谢引起的体重减少正比于体重 每周每公斤体重消耗200千卡 320千卡(因人而异), 相当于70千克的人每天消耗2000千卡 3200千卡;,3)运动引起的体重
9、减少正比于体重,且与运动形式有关;,4)为了安全与健康,每周体重减少不宜超过1.5千克,每周吸收热量不要小于10000千卡。,基本模型,w(k) 第k天(末)体重,c(k) 第k天吸收热量, 代谢消耗系数(因人而异),: 因运动,每小时每千克体重消耗的热量 (千卡) (因运动项目而异),t: 每天运动时间(小时),某甲体重100千克,目前每周吸收20000千卡热量,体重维持不变。现欲减肥至75千克。,第一阶段:每周减肥1千克,每周吸收热量逐渐减少,直至达到下限(10000千卡);,第二阶段:每周吸收热量保持下限,减肥达到目标,2)若要加快进程,第二阶段增加运动,试安排计划。,1)在不运动的情况
10、下安排一个两阶段计划。,减肥计划,3)给出达到目标后维持体重的方案。,确定某甲的代谢消耗系数,即每周每千克体重消耗 20000/100=200千卡,基本模型,w(k) 第k周(末)体重,c(k) 第k周吸收热量, 代谢消耗系数(因人而异),1)不运动情况的两阶段减肥计划,每周吸收20000千卡 w=100千克不变,第一阶段: w(k)每周减1千克, c(k)减至下限10000千卡,第一阶段10周, 每周减1千克,第10周末体重90千克,吸收热量为,1)不运动情况的两阶段减肥计划,第二阶段:每周c(k)保持Cm, w(k)减至75千克,1)不运动情况的两阶段减肥计划,基本模型,第二阶段:每周c(
11、k)保持Cm, w(k)减至75千克,第二阶段19周, 每周吸收热量保持10000千卡, 体重按 减少至75千克。,运动 t=24 (每周跳舞8小时或自行车10小时), 14周即可。,2)第二阶段增加运动的减肥计划,t每周运动时间(小时),3)达到目标体重75千克后维持不变的方案,每周吸收热量c(k)保持某常数C,使体重w不变,不运动,运动(内容同前),6 按年龄分组的种群增长,不同年龄组的繁殖率和死亡率不同,建立差分方程模型,讨论稳定状况下种群的增长规律,假设与建模,种群按年龄大小等分为n个年龄组,记i=1,2, , n,时间离散为时段,长度与年龄组区间相等,记k=1,2,以雌性个体数量为对
12、象,第i 年龄组1雌性个体在1时段内的繁殖率为bi,第i 年龄组在1时段内的死亡率为di, 存活率为si=1- di,假设 与 建模,xi(k)时段k第i 年龄组的种群数量,按年龄组的分布向量,预测任意时段种群按年龄组的分布,Leslie矩阵(L矩阵),(设至少1个bi0),稳定状态分析的数学知识,L矩阵存在正单特征根1,,若L矩阵存在bi, bi+10, 则,P的第1列是x*,特征向量,解释,L对角化,稳态分析k充分大种群按年龄组的分布, 种群按年龄组的分布趋向稳定,x*称稳定分布, 与初始分布无关。, 各年龄组种群数量按同一倍数增减, 称固有增长率,3)=1时, 各年龄组种群数量不变, 1
13、个个体在整个存活期内的繁殖数量为1,稳态分析,存活率 si是同一时段的 xi+1与 xi之比,(与si 的定义 比较),3)=1时,处一阶向前差分,7 差分基础知识,一 差分,1.概念,处k阶向前差分,处一阶向后差分,处k阶向后差分,处一阶中心差分,处k阶中心差分,2. 性质,二 常微分方程化为差分方程,用导数近似式替代导数或者说用适当近似式替代含有导数的表达式,可以得到这些近似值满足的代数方程-差分方程,以二阶常微分方程边值问题为例,目的求,差分法,一般k阶常系数线性差分方程为,差分方程,三 偏微分方程化为差分方程,以二阶椭圆方程的边值问题为例,用两族平行坐标轴的直线,正方形网格把区域G剖分,节点可分三类,1通过该节点的网格线上的相邻四网点都在G内,记 G1,2在G内部但不属于G1 ,记G2,3恰在边界上记G3,确定各节点处解的近似值uij,需要建立代数方程,每一节点建立一个代数方程,任务,偏导数近
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年湖北武汉武钢华工激光大型装备公司招聘笔试参考题库附带答案详解
- 2025年浙江龙游县交投中石化能源有限公司招聘笔试参考题库附带答案详解
- 2025年福建南平市建阳区粮食购销有限公司招聘笔试参考题库附带答案详解
- 2025年河北秦皇岛美博士环保工程有限公司招聘笔试参考题库含答案解析
- 地方药物政策解读试题及答案
- 新疆信访维稳试题及答案
- 教师资格考试考试内容试题及答案
- 明朝皇后考试试题及答案
- 心理咨询师考试的心理状态调适试题及答案
- 矿井水害防治试题及答案
- DGTJ08-2002-2006上海悬挑式脚手架安全技术规程
- 2《烛之武退秦师》公开课一等奖创新教学设计统编版高中语文必修下册
- 孕产妇死亡报告卡
- 施工现场水电费协议
- 破伤风的正确预防-王传林
- 《汽车传感器技术》课件-第九章 爆燃与碰撞传感器
- 人教版六年级数学下册期中试卷及答案【完整】
- 2023年河北省普通高中学业水平12月会考物理试题(含答案解析)
- DLT电力建设施工及验收技术规范锅炉机组篇
- 2023-2024学年统部编版四年级语文下册第四单元测试卷(含答案)
- 欧洲文明与世界遗产智慧树知到期末考试答案2024年
评论
0/150
提交评论