版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十二章 轴对称,小结与复习,把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点.,一.轴对称图形,1、轴对称图形:,2、轴对称:,3、轴对称图形和轴对称的区别与联系,轴对称图形,轴对称,区别,联系,图形,(1)轴对称图形是指( ) 具 有特殊形状的图形, 只对( ) 图形而言; (2)对称轴( ) 只有一条,(1)轴对称是指( )图形
2、的位置关系,必须涉及 ( )图形; (2)只有( )对称轴.,如果把轴对称图形沿对称轴 分成两部分,那么这两个图形 就关于这条直线成轴对称.,如果把两个成轴对称的图形 拼在一起看成一个整体,那 么它就是一个轴对称图形.,一个,一个,不一定,两个,两个,一条,知识回顾:,4、轴对称的性质:,关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对称轴是 任何一对对应点所连线段的垂直平分线。 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。,练习: 1、国旗是一个国家的象征,观察下面的国旗,是轴
3、对称图形的是( ) A.加拿大、韩国、乌拉圭 B.加拿大、瑞典、澳大利亚 C.加拿大、瑞典、瑞士 D.乌拉圭、瑞典、瑞士,加拿大 韩国 澳大利亚 乌拉圭 瑞典 瑞士,C,2、小明照镜子的时候,发现T恤上的英文单词在镜子中呈现“ ”的样子,请你判断这个英文单词是( ),(A),(B),(C),(D),A,3、ABC与DEF关于直线L成轴对称,则C是多少度?,L,650,750,解:,3.,1、什么叫线段垂直平分线?,经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。,2、线段垂直平分线有什么性质?,线段垂直平分线上的点与这条线段的两个端点的距离相等 。,你能画图说明吗?
4、,二.线段的垂直平分线,3.逆定理:与一条线段两个端点距离相等的点,在线段的垂直平分线上。,4.线段垂直平分线的集合定义:,线段垂直平分线可以看作是 与线段两个端点距离相等的所 有点的集合。,三.用坐标表示轴对称小结: 在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.,点(x, y)关于x轴对称的点的坐标为_. 点(x, y)关于y轴对称的点的坐标为_.,(x, y),( x, y),1、完成下表.,(-2, -3),(2, 3),(-1,-2),(1, 2),(6, -5),(-6, 5),(0, -1.6),(0,1.6),(
5、-4,0),(4,0),2、已知点P(2a+b,-3a)与点P(8,b+2). 若点p与点p关于x轴对称,则a=_ b=_. 若点p与点p关于y轴对称,则a=_ b=_.,练 习,2,4,6,-20,(抢答),例:已知ABC的三个顶点的坐标分别为A(-3,5),B(- 4,1),C(-1,3),作出ABC关于y轴对称的图形。,解:点A(-3,5),B(-4,1), C(-1,3),关于y轴对称 点的坐标分别为A(3,5), B(4,1),C(1,3).依次连接AB,BC,CA,就得到ABC关于y轴对称的ABC.,A,B,A,C,归纳:(P44)先求出已知图形中的 特殊点(如多边形的顶点或端点)
6、的对应点的坐标,描出并连接这些点,就可 得到这个图形的轴对称图形.,x,y,1.如图,ABC中,边AB、BC的垂直平分线交于点P。 (1)求证:PA=PB=PC。 (2)点P是否也在边AC的垂直平分线上呢?由此你能得出什么结论?,结论:三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。,1.有A、B、C三个村庄,现准备要建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置。,A,B,C,利用轴对称变换作图:,4.利用轴对称变换作图:,如图:要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道什么地方,可使所用的输气管道线最短?,A,B,L,P,2. 如图
7、,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点, 作法:作点B关于直线 a 的对称点点C,连接AC交直线a于点D,则点D为建抽水站的位置。 证明:在直线 a 上另外任取一点E,连接AE.CE.BE.BD, 点B.C关于直线 a 对称,点D.E 在直线 a上,DB=DC,EB=EC, AD+DB=AD+DC=AC, AE+EB=AE+EC 在ACE中,AE+ECAC, 即 AE+ECAD+DB 所以抽水站应建在河边的点D处,,某中学七(4)班举行文艺晚会,桌子摆成两直条(如图中的A
8、O,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? 作法:1.作点C关于直线 OA 的 对称点点D, 2. 作点C关于直线 OB 的对称点点E, 3.连接DE分别交直线OA.OB于点M.N, 则CM+MN+CN最短,A,O,B,. .,E,D,M,N,G,H,证明:在直线OA 上另外任取一点G,连接 点D,点C关于直线OA对称, 点G.H在OA上,DG=CG, DM=CM, 同理NC=NE,HC=HE, CM+CN+MN=DM+EN+MN=DE, CG+GH+HC=DG+GH+HE, DG
9、+GH+HEDE(两点之间,线段最短), 即CG+GH+HCCM+CN+MN 即CM+CN+MN最短,4. 如图:C为马厩,D为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线, 作法:1.作点C关于直线 OA 的 对称点点F, 2. 作点D关于直线 OB 的对称点点E, 3.连接EF分别交直线OA.OB于点G.H, 则CG+GH+DH最短,F,A,O,B,D , C,E,G,H,证明:在直线OA 上另外任取一点G,连接 点F,点C关于直线OA对称,点G.M在OA上,GF=GC,FM=CM, 同理HD=HE,ND=NE, CM+M
10、N+ND=FM+MN+NE=FE, CG+GH+HD=FG+GH+HE, 在四边形EFGH中, FG+GH+HEFE(两点之间,线段最短), 即CG+GH+HDCM+MN+ND即CM+MN+ND最短,4、如图,在等腰直角三角形ABC中,ACB=90,点D为BC的中点,DEAB,垂足为点E,过点B作BFAC交DE的延长线于点F,连接CF, (1)求证:AD CF (2)连接AF,试判断ACF的形状,并说明理由。,A,F,B,D,E,F,C,5.如图,在RtABC中,C=90,DE是AB的垂直平分线,连接AE,CAE:DAE=1:2,求B的度数。,6.如下图ABC中,AC=16cm,DE为AB的垂
11、直平分线, BCE的周长为26cm,求BC的长。,C,7.如图:在ABC中,DE是AC的垂直平分线,AC=5厘米,ABD的周长等于13厘米,则ABC的周长是 。,A,B,D,E,C,18厘米,三.(等腰三角形)知识点回顾,1.等腰三角形的性质 .等腰三角形的两个底角相等。(等边对等角) .等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一) 2、等腰三角形的判定: 如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边),四.(等边三角形)知识点回顾,1.等边三角形的性质: 等边三角形的三个角都相等,并且每一个角都等于600 。 2、等边三角形的判定: 三个角都
12、相等的三角形是等边三角形。 有一个角是600的等腰三角形是等边三角形。 3.在直角三角形中,如果一个锐角等于300,那么它 所对的直角边等于斜边的一半。,1、如图,在ABC中,AB=AC时, (1)ADBC _= _;_=_ (2) AD是中线 _; _= _ (3) AD是角平分线 _ _;_=_,BAD,CAD,BD,CD,AD,BC,BAD,CAD,AD,BC,BD,CD,练习:,2、“有一个等腰三角形的两条边长分别是4cm和8cm,则周长为,20cm,3、若等腰三角形的一个角为400,则另外两个角的度数为,700,700 或 400,1000,4、已知,如图: AB=AC AD=DC=BC则A=,A,B,C,D,360,5、已知,如图AB=AB=CD AD=BD则BAC=,A,B,C,D,1080,6、如图,在ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么BCD的周长是_cm.,A,B,C,D,E,26cm,7、如图,P、Q是ABC边上的两点,BP=PQ=QC=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 耐酸胶鞋市场需求与消费特点分析
- 电镀参数测试仪市场需求与消费特点分析
- 2024年度安居客大连二手房地产广告发布合同
- 2024年度信息技术产品购买与维护合同
- 2024年度影视作品制作与发行权转让合同
- 2024年度汽车制造设备采购与安装合同
- 2024年度房产买卖合同模板
- 2024年度教育信息化建设与维护合同
- 椎间盘修复用医疗设备市场发展现状调查及供需格局分析预测报告
- 2024年度版权购买合同版权购买合同
- 公立医院内部控制管理办法解读
- 1:1000地形图测绘项目技术设计书
- 老旧小区改造征求居民意愿表(样表)
- 《基于抖音平台的市场营销策略【7200字论文】》
- 公司BIM人才管理办法
- 卒中防治中心建设情况汇报(同名166)课件
- DB14-T 2511-2022研学旅行基地服务规范
- 产假、陪产假、流产假审批表
- 幼儿园生活垃圾分类管理台账四篇
- CRRT相关理论知识试题及答案
- 制剂室培训课件
评论
0/150
提交评论