版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二项式定理,对于(a+b)n = 的展开式有哪些项?,个,(a+b)n = an+ an-1b+ an-2b2+ an-rbr+ bn,二项式定理,右边的多项式叫做 (a+b)n 的二项展开式,它一共有 n+1 项.,其中各项系数 Cnr (r=0, 1, 2, , n)叫做二项式系数,式中的项 Cnr an-rbr 叫做二项展开式的通项,是第r+1 项,记作 Tr+1,即 Tr+1= Cnr an-rbr (r=0, 1, 2, , n),称为二项展开式的通项公式,(1)展开式各项中a、 b的指数及各项系数的递变规律.但指数和为n,(2)通项公式中a、 b的指数及其系数和所在项数之间的关系.
2、,试一试:写出 (1+x)n 的展开式及其通项公式。,总结,1.二项式系数规律:,2.指数规律:,(1)各项的次数均为n; (2)二项和的第一项a的次数由n降到0, 第二项b的次数由0升到n.,3.项数规律:,两项和的n次幂的展开式共有n+1个项,定理特征,二项式定理:,4.通项公式:,Tr+1= Cnr an-rbr (r=0, 1, 2, , n),右边的多项式叫做的 展开式,解:,第三项的二项式系数为,,第三项的系数为240.,项的系数:该项所有常数因子的积.,二项式系数:,例: 的展开式常数项,解:,通项公式:,Tr+1= Cnr an-rbr (r=0, 1, 2, , n),练习:
3、,1、求 的展开式的中间两项,解:,展开式共有10项,中间两项是第5、6项。,的展开式中,第项的二项式系数与第项的二项式系数之比是:,求展开式中的第项,因此,当n为偶数时,中间一项的二项式系数,取得最大值;,当n为奇数时,中间两项的二项式系数 、,相等,且同时取得最大值。,二项式系数的性质,(1)对称性,与首末两端“等距离”的两个二项式系数相等,(2)增减性与最大值,二项式系数前半部分是逐渐增大的,,由对称性可知它的后半部分是逐渐减小的,且中间项取得最大值。,(3)各二项式系数的和,且奇数项的二项式系数和等于偶数项的二项式系数和2n-1,例:已知(x)n展开式中x2 的系数等于 x的系数的倍,
4、求二项式系数最大的项,解:,例2:已知(x)n展开式中二项式系数和 及所有项的系数之和,变式:已知(2+x)6=a0+a1x+a2x2+a3x3a4x4+a5x5+a6x6, 求 ( 1 )奇次项的二项式系数之和 (2)a0+a1+a2+a3a4+a5a6的值 (3)a1+a2+a3a4+a5a6,因此,当n为偶数时,中间一项的二项式系数,取得最大值;,当n为奇数时,中间两项的二项式系数 、,相等,且同时取得最大值。,二项式系数的性质,(1)对称性,与首末两端“等距离”的两个二项式系数相等,(2)增减性与最大值,二项式系数前半部分是逐渐增大的,,由对称性可知它的后半部分是逐渐减小的,且中间项取
5、得最大值。,(3)各二项式系数的和,且奇数项的二项式系数和等于偶数项的二项式系数和2n-1,特值思想,二项式定理对任意的数a、b都成 立,当然对特殊的a、b也成立!,考察在 n=1, 2, 3, 4 时,(a+b) n 的展开式的系数规律. (a+b)1= , (a+b)2= , (a+b)3= , (a+b)4= .,a+b,a2+2ab+b2,a3+3a2b+3ab2+b3,我国古代优秀成果介绍:,a4+4a3b+6a2b2+4ab3+b4,列出上述各展开式的系数:,1 1 1 2 1 1 3 3 1 1 4 6 4 1,规律: (1)表中每行两端都是1,(2)其它各数都是它肩上两数的和.,1 5 10 10 5 1,1 6 15 20 15 6 1,1,杨辉三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 猪小弟课件教学课件
- 2024年广西体育馆大院体育用品销售合同
- 2024年建筑工程分包及劳务承包协议
- 2024年度石油天然气开采与销售合同
- 2024年度船舶修造安装工程分包协议
- 2024年度深圳晚辅老师招聘合同
- 2024年布匹交易协议规定
- 04年国际货物买卖合同
- 2024期房购买合同范本
- 2024年度施工现场食品安全管理合同
- 家长会课件:小学三年级上册数学家长会课件
- GB/T 43933-2024金属矿土地复垦与生态修复技术规范
- 工程变更通知单ECN模板-20220213
- 化工和危险化学品生产经营单位二十条重大隐患判定标准释义(中化协)
- 课本剧哈姆雷特剧本
- 黑变病的护理查房
- 2023《住院患者身体约束的护理》团体标准解读PPT
- 医院陪护服务投标方案(技术方案)
- 一老一小交通安全宣传
- 城市社区居家养老服务体系建设研究-以我国椒江区、田家庵区为例的开题报告
- 重点部位感染与预防控制
评论
0/150
提交评论