13 算法案例1.ppt_第1页
13 算法案例1.ppt_第2页
13 算法案例1.ppt_第3页
13 算法案例1.ppt_第4页
13 算法案例1.ppt_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.3 算法案例,第一章 算法初步,案例1 辗转相除法与更相减损术,3 5,9 15,问题1:在小学,我们已经学过求最大公约数的知识,你能求出18与30的最大公约数吗?,创设情景,揭示课题,18 30,2,3,18和30的最大公约数是23=6.,先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.,问题2:求8251与6105的最大公约数?,研探新知,例1 求两个正数8251和6105的最大公约数。,解:8251610512146,显然8251与6105的最大公约数也必是2146的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。,

2、研探新知,1.辗转相除法:,例1 求两个正数8251和6105的最大公约数。,解:8251610512146;,6105214621813; 214618131333; 333148237; 1483740.,则37为8251与6105的最大公约数。,以上我们求最大公约数的方法就是辗转相除法。也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的。,练习1:利用辗转相除法求两数4081与20723的最大公约数.,2.更相减损术:,例2 用更相减损术求98与63的最大公约数.,解:由于63不是偶数,把98和63以大数减小数,并辗转相减,,即:986335; 633528; 35287; 28721; 21714; 1477.,所以,98与63的最大公约数是7。,练习2:用更相减损术求两个正数84与72的最大公约数。,3.辗转相除法与更相减损术的比较:,(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主;计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。 (2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到.,课

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论