下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、贵州省贵大附中2011届数学复习教学案:3.1 等差数列等差数列的性质教学目的:1.明确等差中项的概念.2.进一步熟练掌握等差数列的通项公式及推导公式.教学重点:等差数列的定义、通项公式、性质的理解与应用教学难点:灵活应用等差数列的定义及性质解决一些相关问题授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析: 本节是在学习等差数列的概念、通项公式的基础上,推导等差数列前n项和的公式,并突出等差数列的一个重要的对称性质:与任一项前后等距离的两项的平均数都与该项相等,认识这一点对解决问题会带来一些方便教学过程:一、复习引入首先回忆一下上节课所学主要内容:1等差数列:一般地,如果一个
2、数列从第二项起,每一项与它前一项的差等于同一个常数,即=d ,(n2,nN),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示) 2等差数列的通项公式: (或=pn+q (p、q是常数)3有几种方法可以计算公差d d= d= d= 二、讲解新课: 问题:如果在与中间插入一个数A,使,A,成等差数列数列,那么A应满足什么条件?由定义得A-=-A ,即:反之,若,则A-=-A由此可可得:成等差数列也就是说,A=是a,A,b成等差数列的充要条件定义:若,A,成等差数列,那么A叫做与的等差中项不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后
3、一项的等差中项如数列:1,3,5,7,9,11,13中5是3和7的等差中项,1和9的等差中项9是7和11的等差中项,5和13的等差中项看来,性质:在等差数列中,若m+n=p+q,则,即 m+n=p+q (m, n, p, q N ) 但通常 由 推不出m+n=p+q ,三、例题讲解例1在等差数列中,若+=9, =7, 求 , .分析:要求一个数列的某项,通常情况下是先求其通项公式,而要求通项公式,必须知道这个数列中的至少一项和公差,或者知道这个数列的任意两项(知道任意两项就知道公差),本题中,只已知一项,和另一个双项关系式,想到从这双项关系式入手解: an 是等差数列 +=+ =9=9=97=
4、2 d=72=5 =+(94)d=7+5*5=32 =2, =32例2 等差数列中,+=12, 且 =80. 求通项 分析:要求通项,仍然是先求公差和其中至少一项的问题而已知两个条件均是三项复合关系式,欲求某项必须消元(项)或再弄一个等式出来解:+=2 =10, =2 或 =2, =10 d= d=3或3 =10+3 (n1) = 3n 13 或 =2 3 (n1) = 3n+5例3在等差数列中, 已知450, 求及前9项和. 解:由等差中项公式:2, 2由条件450, 得5450, 90, 2180. ()()()()9810.例4已知a、b、c的倒数成等差数列,求证:, 的倒数也成等差数列
5、分析:给定的是三个数的倒数成等差数列故应充分利用三个数x、y、z成等差数列的充要条件:x+y=2z 证明:因为a、b、c的倒数成等差数列 ,即2ac=b(a+c) 又+=-2=-2=-2=-2=-2=-2=所以,的倒数也成等差数列四、练习:1.在等差数列中,已知,求首项与公差解:由题意可知解之得即这个数列的首项是-2,公差是3或由题意可得:即:31=10+7d可求得d=3,再由求得1=-2 2. 在等差数列中, 若 求 解: 即 从而 3.在等差数列中若 , 求 解: 6+6=11+1 7+7=12+2 +2 =2- =280-30=130 五、小结 本节课学习了以下内容:1成等差数列2在等差数列中, m+n=p+q (m, n, p, q N ) 六、课后作业:1.在等差数列中,为公差,若且求证:1 2 证明:1设首项为, 2 2.在等差数列中, 若 求 解: 即 3.在等差数列中,若 求 解:=4.成等差数列的四个数之和为26,第二数和第三数之积为40,求这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖南长沙市食品药品检验所招聘编外合同制人员12人考试参考题库及答案解析
- 现代销售团队激励方案范文
- 员工健康体检方案及实施标准
- 2025广东佛山市三水区三水中学引进高层次人才7人考试备考题库及答案解析
- 镀锌铁件产品技术规范标准
- 七年级文言文阅读理解专项练习
- 课后托管服务费管理与分配方案
- 企业安全隐患管理报告范例
- 施工项目劳务管理与合规操作指南
- 酒店客房服务标准与评价体系
- 挂靠试驾车协议书
- 【基于单片机的噪音监测系统设计】8600字(论文)
- 村级代管委托协议书
- 《SJG29-2023合成材料运动场地面层质量控制标准》
- 中考数学压轴题专项突破:胡不归模型(含答案及解析)
- 办公室装修改造合同协议
- 可再生水使用与管理方案计划
- 公务员2020年国考《申论》真题及答案(省级)
- 安桥功放TX-SR508使用说明书
- 小升初拓展培优:环形跑道问题(讲义)-2023-2024学年六年级下册数学人教版
- 2024年劳务合同协议样本(二篇)
评论
0/150
提交评论