9E燃机极好的学习资料ppt课件.ppt_第1页
9E燃机极好的学习资料ppt课件.ppt_第2页
9E燃机极好的学习资料ppt课件.ppt_第3页
9E燃机极好的学习资料ppt课件.ppt_第4页
9E燃机极好的学习资料ppt课件.ppt_第5页
已阅读5页,还剩75页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Page 1,9E燃机极好的学习资料,Page 2,Index 目录,Gas Turbine Principle & General Introduction 燃机原理及概况 2. Gas Turbine Structure 燃机本体结构 3. Gas Turbine Accessory Systems 燃机附属系统 4. Gas Turbine Control System 燃机控制系统 Gas Turbine Shipment Weight & Dimension 燃机运输重量及尺寸 6. Gas Turbine Erection Procedure 燃机安装步骤 7. Gas Turbi

2、ne Commissioning Procedure 燃机调试规程 8. Gas Turbine Performance Procedure 燃机性能试验规程,Page 3,Physics,Principle of Conservation of Mass: mass in = mass out (Open System) Principle of Conservation of Energy: energy in = energy out energy may be transformed from one form to another (Power Plant converts Chem

3、ical to Thermal to Mechanical to Electrical Energy),Page 4,First Law of Thermodynamics,Q = 727 MW,W= 281 MW,Example: 9FB Energy Balance,DH4-1 = 446 MW,Where: DH = total enthalpy change fluid entering system Q = net thermal energy flowing into system during process W = net work done by the system,Gen

4、eral Energy Equation energy in = energy out, or Q = W + DH,Page 5,Second Law of Thermodynamics,- Amount of energy which is unavailable to do work A measure of disorder,Entropy:,Basic Principle: Heat moves from hot to cold,Page 6,Note: s denotes entropy,Ideal Brayton Cycle Gas Turbine Application,Pag

5、e 7,Real Brayton Cycle Compression and Turbine Expansion Inefficiencies,Typical Values for GE Turbines Compressor Efficiency 0.86-0.89 Turbine Efficiency 0.90-0.93,Page 8,Real Brayton Cycle Pressure Losses - Inlet, Combustor, Exhaust,Typical Values for Turbine Inlet Pressure Loss 3” H2O Exhaust Back

6、 Pressure (SC) 5.5” H2O Exhaust Back Pressure (CC) 15” H2O DLN Combustor 6-7% DP/P,Inlet,Exhaust,Combustor,2,3,1,4,Page 9,Real Brayton Cycle Parasitic Flows for Turbine Cooling,Entropy,Temperature,Compressor Discharge Pressure,Ambient Pressure,Compression,Expansion,Heat Addition,Heat Rejection,Combu

7、stor DP,Exhaust DP,Inlet DP,Stg 1 Cooling,Stg 2 Cooling,Stg 3 Cooling,Stg 1 Nozzle Cooling,4,1,2,3,Page 10,COMPRESSOR,Entropy,The TURBINE transforms thermal energy into mechanical energy (3 4) used for driving the Compressor & Generator,Brayton Cycle Gas Turbine,Page 11,World wide heavy-duty Gas Tur

8、bine manufacturers,Page 12,5P,7A,7E,9B,6A,7F,9F,9FB,7FB,6FA,Evolution of GE Gas Turbines,7FA+e,9FA+e,6FA+e,9FA,7FA,7B,First air cooled bucket Firing T 1000C,Firing T 1250C,Page 13,Evolution of MHI Gas Turbines,Page 14,Line-Up of MHI Gas Turbine,Page 15,The Efficiency and Power Output of MHI Gas Turb

9、ine,Page 16,MHI 701F / 701G Gas Turbine features,Page 17,Siemens Gas Turbines,Page 18,Siemens SGT5-4000F (V94.3A),Page 19,Alstom GT26 Gas Turbine Features,Page 20,Alstom Gas Turbine Combined Cycle (50 Hz&60 Hz),Page 21,典型F级机组和E级机组的性能及参数,表 1:F级简单循环燃气轮机的参考性能(ISO标准参考条件),注*:这是透平参考进口温度,即透平第一级喷嘴前的温度。,Page

10、 22,表2:由F级燃气轮机组成的联合循环机组的参考性能(ISO标准参考条件),Page 23,表 3:E 级简单循环燃气轮机的参考性能(ISO标准参考条件),Page 24,表4: 由E级燃气轮机组成的联合循环机组的参考性能(ISO标准参考条件),Page 25,GE Gas Turbines,9FA at Horizontal Assembly,Page 26,Combustion,Turbine,Major Gas Turbine Components,Air Inlet,Gas Exhaust,Cold End,Hot End,Fuel,Page 27,GE Gas Turbines

11、Family:Evolutions and Performances,Page 28,Shorter Launch Cycles Technology matures faster,1986 7F 1260 Tfire,1991 9F 1260 Tfire,1992 7FA 1288 Tfire,1994 6FA 1288 Tfire,ScaleFactor = 0.69,1996 7FA+ 1316 Tfire,1997 7FA+e 1327 Tfire,1997 9FA+e 1327 Tfire,2001 6FA+e 1327 Tfire,ScaleFactor = 1.2,2000 7F

12、B 1370+ Tfire,2002 9FB 1396 Tfire,SIZE (Scaling Factor ),(Technology, Materials),Firing Temperature,Evolution of Class F Gas Turbines,5230 RPM Geared Machines for 50 or 60Hz,1992 9FA 1288 Tfire,3000 RPM 50Hz Machines,3600 RPM 60Hz Machines,Page 29,Compressor,Multi-stages, Axial compressor Through Bo

13、lted Disc Assy Cast Compressor Casings IGV for flow control (1 stage IGV for E/F class) Air discharged to Combustors,Page 30,Combustion System,Can Annular Reverse Flow Chambers Dual Fuel Capability (Gas - Liquid) Dry Low NOx , Standard , or Low BTU Combustion Systems, Water /Steam injection for emis

14、sion abatement,Page 31,3 Stage Turbine,Air cooled Blades and Nozzles,Tip shrouded Blades,Turbine ( Air cooled GT ),Rotor Assembly = Bolted Discs & Spacers,Page 32,Page 33,Siemens SGT6-5000F,Page 34,Firing Temperature GE Defined at N1 Trailing Edge,N 1,N 2,N 3,B 1,B 2,B 3,Turbine Exit Flow,Nozzle/Whe

15、elspace Cooling Air (Chargeable),Firing Plane,Combustor,Combustor & N1 Cooling Air (Non-Chargeable),Bucket/Wheelspace Cooling Air (Chargeable),Page 35,Combined Cycle T-S Diagram,5,/,Combined Brayton and Rankin Cycle,T,S,Heat Source,Heat Sink,COMPRESSION,EXPANSION,HRSG,GAS TURBINE,TOPPING CYCLE,BOTTO

16、MING CYCLE,STACK,TEMPERATURE,ENTROPY,COMBUSTION,CONDENSER,EXPANSION,Page 36,Gas Turbine Cycle Configurations,Page 37,Power Train Center Line Equipment Variations,Generator on the hot (Turbine) side of GT Used prior to 1990s Shaft driven accessories Complex packaging,Generator on the cold (Compressor

17、) side of GT Modern F-class arrangement Electric motor driven accessory skids Modular packaging,Hot End Drive (prior to 1990s) Applied to Frames 51P, 6B,7EA,9E,Cold End Drive Applied to Frames 6FA, 7FA/FB, 9FA/FB,7H,9H,Complex Single-Shaft Power Train,Page 38,Examples of Combine Cycle Plant Arrangem

18、ents,Multi-shaft CC 2 gas turbines + 1 steam turbine,Single-shaft CC,Page 39,Energy Utilization/Loss in Combined Cycle Power Plant,Page 40,9FA Gas Turbine Power Plant General Layout,Page 41,9FA Gas Turbine Power Plant General Layout,Page 42,9E Gas Turbine General Layout,Mark* VIe Control System - Ha

19、rdware,GE Gas Turbine Controls,Page 43,Page 44,100MB Ethernet,Unit Data Highway (EGD, NTP),Plant Data Highway (TCP/IP, OPC, GSM, Modbus, PI Server, DNP 3.0),Controller(s),Operator & Maintenance Stations (HMI),Ethernet,Ethernet,System 1 Condition Monitoring,Historian OSI PI,Turbine I/O,Driven-Load I/

20、O,Remote I/O,Rotating Machinery Control,Process I/O,Process I/O,Remote I/O,Process Control,Controller(s),PTP IEEE1588,100MB Ethernet,PTP IEEE1588,MK VIe Architecture,TCP Panel,Page 45,Turbine Control 1991,7FA Gas Turbine,Industrial Steam,9H Combined Cycle,Turbine / Plant Control 1997,Governor / Plan

21、t Control 2003,Networked I/O, 100MB Ethernet / Fiber,Governors, Hydro, Wind,VME Backplane, Ethernet, WIndows,Proprietary Design,Mark V,Mark VI,Mark VI e,Evolution of Control System,Page 46,MK VIe Enhancement,Dual,Triple,Flexible Redundancy,Page 47,MK VIe TMR Features,TMR configuration,Controller red

22、undancy I/O pack redundancy Terminal board redundancy local transimitters/transducers 2-oo-3 voting for digital inputs Analog inputs voting,Page 48,MK VIe Hardware,Controllers,Power Supplies,IONet Switches,Field Wiring Vertical Channels Top & Bottom Cabinet Access Barrier Blocks Pluggable (2) 3.0mm2

23、 (#12AWG) wires/pt,TCP Outline,Page 49,MK VIe Hardware,TCP Controller Rack,Main Processor Board Compact PCI QNX Operating System Unit Data Highway, Ethernet IONet 100MB Ethernet,Optional Second Processor,Power Supply,Processor650MHz 1.66GHz Cache256k bytes 1M byte Ram128M bytes 256M bytes Flash128M

24、bytes 128M bytes CommunicationDual 10/100 Full Duplex Ethernet Power18 to 32Vdc,Page 50,MK VIe Hardware,I/O Packs Plug into Mk VI Termination Boards Barrier & Box Type TBs,Processor32 Bit RISC CPU 266MHz Cache32k bytes Ram32M bytes Flash16M bytes CommunicationDual 10/100 Full Duplex Ethernet Power28

25、Vdc,TCP I/O Packs,Page 51,MK VIe Software,TooloboxST is the software tool for I/O definition, EGD configuration, and control strategy programming.,EGD Configuration,Control Logic Sheet,ToolboxSTconfiguration software,Page 52,Cimplicity is the tool used for HMI (human-man interface) display and edito

26、r,Operation Menu,Pushbutton,Live Data,Status Feedback,Setpoint,Alarm Window,CimplicityHMI Display Editor,MK VIe Software,Page 53,9FA Gas Turbine Weight & Dimension,9FA Component Weights and Dimensions,a. Heaviest piece to be handled during erection: kg: 285,000 b. Heaviest piece to be handled during

27、 maintenance: kg 77,500 c. Shipping weight of heaviest piece: kg 288,000 Turbine,Page 54,9E Gas Turbine Weight & Dimension,a. Heaviest piece to be handled during erection: kg: 207,000 b. Heaviest piece to be handled during maintenance: kg 49,611 GT rotor c. Shipping weight of heaviest piece: kg 208,

28、000 Turbine,9E Component Weights and Dimensions,Page 55,Gas Turbine Erection Procedure,安装过程包含了通用电气MS 9001FA燃气轮机所有设备、模块、管路、电缆 在现场的运输 吊装、就位、固定和安装的操作。,1 基础准备 基础准备包括燃气轮机、发电机和辅助模块的基础,迸气系统和排气系统的基础与附属模块的基础三部分。,2 燃机主设备的安装,(1)安装燃气轮机和发电机的理想方法是配 备一台起重机,或者方法就是利用滑动装置,从卡车上滚动到基础上然后就位。 (2)燃气轮机的就位 先在基础上放好燃机底部各类键销的固定

29、架,再将燃气轮机吊装就位并搁置在底板和薄垫 片上,调整薄垫片直至正确的中心线高度。,Page 56,Gas Turbine Erection Procedure,2 燃机主设备的安装,(3)安装负荷联轴节(入口端) 建议采用干冰冷套的方法。安装时螺栓的紧固要求是测量螺栓的伸长量。 (4)发电机的就位安装 取下发电机上的锁定装置,提高约25.4mm的距离(往换向器一端的方向)。在发电机的底板放置球面垫圈和垫片层,调整薄垫片直至正确的中心线高度。 (5) 盘车装置的安装 安装人员应该对所有的螺栓进行装配和扭矩加载测试。,(6) 燃气轮机排气扩压段安装 先布置好排气扩压段两侧的弹簧支架,用吊车将排气

30、扩压段吊装到弹簧支架上,穿入与排 缸连接的垂直面的螺栓,待调整好开口间隙后再紧固此部分螺栓,以减少对燃气轮机本体的附加应力。安装排气扩压段和外壳之间的绝缘材料。,Page 57,Gas Turbine Erection Procedure,2 燃机主设备的安装,(7)最终的定位操作 首先应该将发电机与燃气轮机、盘车装置与发电机之间的位置确定好,然后根据要求进行设备的找正找中心工作。注意事项:在进行最终的定位操作之前,排气扩压段应该装配在燃气轮机上。,3 安装辅助模块,(1)安装辅助模块 在基础底板上安装辅助模块。此模块包含润滑油箱、润滑油过滤器、润滑油泵和马达、润滑油冷却器、液压控制油泵和马达

31、、液压蓄电池、密封油泵、提升油泵、润滑油蒸汽去雾器和过滤器、 气体燃料设备。并按照厂商的说明书来定位油泵和马达。,注意事项:辅助模块的基础上没有地脚螺栓。此模块被设计安装在底板上,它包括一个定位销 和一个导向销,可以向一端滑动,以补偿热膨胀。模块上的中心定位销靠近燃气轮机端。,Page 58,Gas Turbine Erection Procedure,3 安装辅助模块,(2)安装燃料和雾化空气的模块及电气控制室(PEECC)。 注意事项:液体燃料和雾化空气模块安装在6个支撑腿上。PEECC 模块安装在8个支撑腿上。,(3)安装注水模块、消防模块、水冷却模块、液体燃料前置模块、空气处理器模块、

32、水洗模块等 六个模块。,(4)安装冷却风扇模块。 (5)安装LCI和励磁机、绝缘触发变压器、总线辅助室。 (6)安装和装配封闭母线,Page 59,Gas Turbine Erection Procedure,4 罩壳和平台的安装 (1)基础划线,并布置与安装罩壳底部和第一层框架。 (2)安装发电机和燃气轮机罩壳:依次安装上部框架和面板。注意此处有封闭母线出线排的 管道与其他的管道,应和罩壳一起安装。 (3)安装排气风扇和阻尼器,安装通道、平台和楼梯。同时在燃气轮机和发电机的护栏底部安 装一个防止老鼠啃咬的装置。,5 安装空气进气系统 (1)安装空气进气室的强制通风系统 (2)安装空气进气风道

33、系统 注意事项:安装人员应该确保风道之间的所有接合面都是防水的或者密封的。 (3)安装空气进气过滤室 注意事项: 安装精细过滤筒一般在机组第一次运行前30天进行。,Page 60,Gas Turbine Erection Procedure,6 排气烟道的安装 (1)布置好排气烟道的底部钢结构。 (2)装配和焊接排气烟道的四个部分,上面两部分和下面两部分应该在水平连接处通过螺栓连接法兰盘来进行定位。,(3)在排气烟道的外表安装保温材料。 (4)安装排气扩散段和排气烟道之间的膨胀节。膨胀节是由两个拼装而成的不锈钢环搭 接组成的。 注意事项:排气烟道和锅炉进口烟道之间的膨胀节应该由锅炉制造商提供并

34、安装。,Page 61,Gas Turbine Erection Procedure,7 基础上的管道安装 在安装燃气轮机发电机时, 一般由通用电气公司提供各种on-base部分的管道(包括支撑架、 调节装置和各种仪器)。 注意事项:如果部分管道在出厂之前已经装配到燃气轮机上了,那么剩下的管道和管件一般 是装在集装箱中运抵现场。此部分的部件号码在集装箱内的管件储放柜上有明显标示,每根管道上也有标记牌,便于安装前清点。,8 基础外的管道安装 Off-base的管道一般是指外部设备(非GE供货)与GE模块或燃气轮机、发电机之间的管道, 以及部分GE模块与主设备之间的管路。管路系统设计由业主委托设计

35、院完成,施工单位进行施 工。安装水和二氧化碳管道和液体燃料管道,空气进气加热管道,排放管,水洗管道,消防管道和 放空管共七种。 警告:在对任何管道和部件进行焊接之前,应该确保所有的设备都已经正确接地了,这样可避免出现过大的电流。在对设备进行焊接操作时,应尽量使接地点靠近工作位置。,Page 62,Gas Turbine Erection Procedure,9 装配电气部分 安装各个电气控制元件包括所有导线、管道、仪表、控制装置、接线盒和电气材料的安装,这些材料用在燃气轮机、发电机、电气控制室(PEECC)、辅助模块和液体燃料雾化空气模块上。 注意:只有在被允许的前提下才能安装与连接从发电机至

36、主变的封闭母线。,10 基础外的模块上的电气安装 根据GE的安装图纸来安装所有的控制设备和仪表(压力和温度开关、测仪表、振动开关、液位指示、低位开关报警器)。,11 安装业主购买的电气设备,由业主提供的十种电气设备:天然气测量管 和测量孔,低量程压差计,高量程压差计,压力变送器,天然气测量热电偶,天然气监测系统,进气传感器和排气传感器, 湿度传感器性能监视器和发电机出线等。,Page 63,Gas Turbine Erection Procedure,12 其它设备的电气安装和6.6kV的VAC电源(BOP) 13 电力供应:安装人员负责提供动力电缆, 连接GE公司提供的设备和业主提供的设备

37、14 辅助动力装置(66kV4125 VAC):安装辅助动力电缆和互连导线,15 辅助总线 / LCI室:安装互连导线。,Page 64,Gas Turbine Commissioning Procedure 9FA,Page 65,Gas Turbine Commissioning Procedure,Page 66,Gas Turbine Commissioning Procedure,Page 67,Gas Turbine Commissioning Procedure,Page 68,Gas Turbine Commissioning Procedure,Page 69,Gas Tur

38、bine Commissioning Procedure,Page 70,Gas Turbine Commissioning Procedure,Page 71,Gas Turbine Performance Test Procedure,The Purpose: to measure the performance of the gas turbine-generator units in accordance with the purchase contract. The evaluation procedure: To utilize correction factors to tran

39、slate the measured performance at the test conditions to the rated conditions 3. The performance test international standard: Simple Cycle: ASME PTC 22 Combined Cycle: ASME PTC 46 4. The performance specifications: Power Output xxx,xxx kW Heat Rate, LHV xxx,xxx kJ/kWh Gas Turbine Exhaust Temperature

40、 xxx.x C Gas Turbine Exhaust Available Energy xxx.x GJ/hr,Page 72,Gas Turbine Performance Test Procedure,5. Rated Conditions Ambient air temperature xx oC Ambient air relative humidity xx % Barometric pressure x.xxx bar (xx.xx psi) Gas Turbine Shaft Speed xxxx rpm Generator power factor x.xx (laggin

41、g) Gas turbine conditions New and Clean, xxx Fired Hours Inlet system pressure drop ( contract rated conditions) xx.x mm H2O (x inH2O) Exhaust system pressure drop (contract rated conditions) xxx.x mm Fuel Natural Gas Fuel supply temperature xxx oC (xxx.x oF) Fuel composition % volume Nitrogen (N2)

42、xx.xx Methane (CH4) xx.xx Ethane (C2H6) xx.xx Propane (C3H8) xx.xx Fuel lower heating value xx,xxx,Page 73,Gas Turbine Performance Test Procedure,6. Division of Test Responsibilities Test Activity Conducting Party Witnessing Party Prepare the thermal performance test procedure Provide special instru

43、mentation as specified herein Provide suitable containers for the collection of fuel samples Perform required station instrumentation calibration checks Witness / Assist station instrumentation calibration checks Install special test instrumentation Direct the installation of special test instrument

44、ation Obtain calibration records and/or flow section dimensions for the fuel flow section Execute of test program Witness execution of test program Provide copies of pertinent measured data to involved parties Arrange for third party analysis of fuel samples Remove special test instrumentation Calcu

45、late corrected performance results and provide preliminary results Issue the final test report,Page 74,Gas Turbine Performance Test Procedure,7. Measurement and Instrumentation Performance test data are of two classes: Primary Data used for performance test calculations Secondary Data not used for p

46、erformance test calculations, but required for reference or diagnostic purposes,8. Pre-Test Preparation An off-line water wash of the gas turbine compressor The calibration and proper operation of the control system pertinent station instrumentation and measurement devices, and recording systems wil

47、l be verified,9. Conducting the Test For each unit, a minimum of three (3) test runs per rated case listed will be conducted.,Page 75,Gas Turbine Performance Test Procedure,In accordance with paragraph 3.3.4 of ASME PTC 22-1997: Each test run will be conducted over a thirty (30) minute time period.

48、Manual data will be recorded at least five (5) minute intervals Electronic control system and data acquisition data will be recorded at least one (1) minute intervals As a minimum, a set of two (2) fuel samples will be taken at the beginning and end of each test run All data files, electronic and/or

49、 copies of the manual data hard copy sheets relevant for performance testing and evaluation purposes will be given to the witnessing party immediately after the test. Deviations from the procedure in any aspect of the test program should be discussed by the Conducting Party and the Witnessing Party.

50、,Evaluation Calculation formula check and confirmation The correction curves will be used to account for the difference between the rated value and the measured value for each parameter,Page 76,Gas Turbine Performance Test Procedure,Performance Correction Curves Examples,Compressor Inlet Temperature vs. Output Compressor Inlet Relative Humidity vs. Output Barometric Pressure vs. Output Shaft Speed vs.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论