




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、A Hybrid Multicast-Unicast Infrastructure for Efficient Publish-Subscribe in Enterprise Networks,Danny Bickson, Ezra N. Hoch, Nir Naaman and Yoav Tock IBM Haifa Research Lab, Israel,2,Outline,Motivation The channelization problem Our hybrid approach Experimental results Conclusions,3,Motivation: lar
2、ge scale publish subscribe application,Large number of information flows (topics) and subscribers Each flow must be delivered to a subset of interested subscribers Example: financial market data dissemination Publisher divides data feed into a large number information flows, (100K) e.g. stock symbol
3、s, futures, commodities Many stand-alone subscribers (1K) Subscribers display interest heterogeneity - are interested in different yet overlapping subsets of the topics Any single topic may be delivered to a large number of subscribers (hot / cold topics),4,Common approaches,Use unicast (point-to-po
4、int) connections Limitations: poor utilization of network resources (duplicate transmissions) Use broadcast (single multicast channel) Limitations: receivers filter unwanted content Utilize multicast to transmit data Topics are mapped into multicast groups. Each user joins the groups that cover his
5、topic-interest. Reduces receiver filtering Limitations: limited amount of multicast addresses Network element state problem Receiver resources (NICs),5,Our novel contribution,Create a hybrid approach that combines both multicast and unicast Flexible allocation of transmissions Topics with high inter
6、est enjoy efficiency of multicast Topics with low interest are transmitted in unicast Formalize as an optimization problem Propose a two step alternating method for computing the resource allocation,6,The Channelization Problem,n flows Flow rates k multicast groups m users Interest matrix W The task
7、: find mapping matrices X,Y that minimizes the communication cost The cost of transmission take into account transmission to multiple groups The cost of reception minimize excess filtering,7,The Hybrid Channelization Problem,F1,F2,Fn,F3,G1,G2,Gk,U1,U2,Um,U3,Flows,Users,Multicast Groups,F1 F2,F1 F2 F
8、8,F3 F4 F6,F1 Fn,InterestExtraction (W),F4,X flow to group map,Y user subscription map,T unicast transmission map,8,The Hybrid Channelization Problem,Modified cost function Problem objective is,Cost of multicast reception,Cost of multicast transmission,Cost of unicast reception & transmission,9,Prop
9、osed Solution,Unfortunately the hybrid problem is NP-hard We propose a two step heuristic solution First step: solve the channelization problem (multicast mapping) Second step: Choose flow-user pairs for unicast, Remove redundant assignments from multicast mapping Recalculate the cost Iterate until
10、convergence, or unicast BW limit exceeded,10,First step: channelization problem solution,We have experimented with the following algorithms K-Means (2005) performs best,11,K-Means Mapping Algorithm,Input Interest matrix, topic rate vector Basic insight Put “similar” topics in the same group “Similar
11、” topics have a similar audience - causes less filtering Take the rate into account,Iterative Clustering Algorithm (K-means) Init: Topics are assigned into a fixed number of groups Move: In each step, remove a single topic, and move it to the best group the one producing the lowest cost Cost: After
12、each epoch, compute total filtering cost Stop: cost doesnt improve | time elapsed | max # iter.,T1,T2,T3,T4,T5,T6,T7,T8,T9,T5,?,?,?,v,x,x,x,x,x,v,v,x,x,Users,Topics,x,x,v,v,v,Users Interest Vector,TopicsAudience Vector,Interest Matrix =,Rate Vector =,12,Second step: choosing user-flow pairs for unic
13、ast,Experimented with several heuristics Heavy users - all transmission to a specific heavy user is sent using unicast Lightweight flows - flows with low bandwidth are sent using unicast Greedy flows - move to unicast the flow which best minimizes the total cost Greedy users - move to unicast the us
14、er which best minimizes the total cost An additional heuristic - Greedy user-flow pairs move to unicast the user-flow pair which best minimizes the total cost - very slow, impractical run-time,13,Experimental results,Construction of user-interest matrix W Random, uniform Market distribution based on
15、 a model of NYSE stock volume IBM WebSphere cell a real system,14,Channelization algorithms,K-Means (2005) performs best Takes rate into account Gradient decent on the true cost function,15,Effect of the interest matrix on channelization performance,The interest and rate have a significant effect on
16、 channelization performance Some interests have patterns that are easy to “channelize” Interests with less entropy, more order, are easier,16,Hybrid Algorithm Heuristics,Market dist. - Greedy users Can use more unicast BW,WebSphere dist. - Greedy flows Doesnt need more than 20% unicast BW,Unicast BW
17、 limit algorithm will use optimal amount up to the limit,17,Hybrid using greedy flow unicast / multicast tradeoff,Unicast BW allocation exact amount of unicast BW used,Every interest and rate distribution has an optimal amount of unicast BW it can use The hybrid approach improves upon both unicast-o
18、nly and multicat-only,18,Conclusions,We have presented a novel hybrid approach for publish subscribe We have shown using extensive and realistic simulation results that our approach reduces consumed network and host resources K-Means (2005) performs best for channelization, from the selection of alg
19、orithms we tested Greedy hybrid heuristics performed best in our tests Relative competitiveness of the greedy-flows & greedy-users heuristics depends on the structure of the interest matrix and rate, The End ,19,Model based on statistical analysis of NYSE daily trade data 20K Topics 500 Subscribers
20、Avg. 70 flows / user Min 15 flows / user Max 115 flows / user Avg. message fan out 10.1 clients Multicast - message is transmitted once Unicast transmitter data rate is x10 of multicast !,Real Life Messaging Load Model,Backup Model,20,Messaging Load Model Based on Market Research,Financial front off
21、ice Hundreds of users, requiring stock quotes and financial information from several markets Topic space structure Within each market, symbol popularity and rate are exponentially distributed (NYSE market research) Several different markets, with Avg. popularity and size prop. 1/m (assumption). 20K
22、flows, 10 markets, 500 users User interest Each user: selects some markets, selects a percent of the symbols from each chosen market, according to the said distributions,10% of Symbols55% of trade,Backup Model,21,Mapping Algorithm,Input interest matrix, topic rate vector Basic insight Put “similar”
23、topics in the same group “Similar” topics have a similar audience A group with a homogenous audience causes less filtering Take the rate into account The cost of putting two topics in the same group The cost of adding a new topic to a group of topics,v,x,x,x,x,x,v,v,x,x,Users,Topics,x,x,v,v,v,Interest Matrix,T
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省江都区周西中学2025届初三年级五月模拟考试(二)化学试题试卷含解析
- 厦门城市职业学院《理解艺术B:创意舞动》2023-2024学年第二学期期末试卷
- 江苏省无锡市江阴市云亭中学2025年初三下学期入学摸底联合考试英语试题含答案
- 重庆市事业单位2025年第一季度公开招聘笔试历年典型考题及考点剖析附带答案详解
- 鄂尔多斯市事业单位2024年下半年公开招聘工作人员笔试及最低合格分数线笔试历年典型考题及考点剖析附带答案详解
- 益阳师范高等专科学校《工程造价管理》2023-2024学年第二学期期末试卷
- 六年级品德与社会下册 小小少年教学设计 科教版
- 楚雄州2025年事业单位公开招聘工作人员缴费情况(截至2月19日900)笔试历年典型考题及考点剖析附带答案详解
- 第17章 勾股定理 初中数学人教版八年级下册课时练习(含答案)
- 智慧树审计学试题及答案
- 施工机具进场检查验收记录
- 《液压与气动技术项目教程》高职配套教学课件
- 【课件】第3课 象外之境-中国传统山水画 课件-2022-2023学年高中美术人教版(2019)美术鉴赏
- 英语沪教版小学五年级下册Unit6优质课课件1
- 误吸的护理应急预案
- 小件物品寄存和随车托运登记表
- 2022年七步洗手法操作考核评分标准
- 手压式手电筒设计(棘轮机构及电路设计)
- 基础降水井封井方案
- 产品被预警、召回、索赔、退货及顾客投诉管理程序
- 裁床工作流程图
评论
0/150
提交评论