版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Chapter 5 Estimation and Learning,2,Outline,Parametric Estimation Maximum Likelihood Estimation Unbiased Estimates Bayes Estimation Non-Parametric Estimation Histogram Estimation Parzen Window Estimation kN-Nearest-Neighbour Estimation,3,Estimation,4,5.1 Parametric Estimation,5,5.1 Parametric Estima
2、tion,6,5.1 Parametric Estimation,7,5.1 Parametric Estimation,8,5.1.1 Maximum Likelihood Estimation,9,5.1.1 Maximum Likelihood Estimation,10,5.1.1 Maximum Likelihood Estimation,11,5.1.1 Maximum Likelihood Estimation,12,5.1.1 Maximum Likelihood Estimation,13,5.1.1 Maximum Likelihood Estimation,14,5.1.
3、1 Maximum Likelihood Estimation,15,5.1.1 Maximum Likelihood Estimation,16,5.1.1 Maximum Likelihood Estimation,17,5.1.2 Unbiased Estimates,18,5.1.2 Unbiased Estimates,19,5.1.2 Unbiased Estimates,20,5.1.2 Unbiased Estimates,21,5.1.2 Unbiased Estimates,22,5.1.2 Unbiased Estimates,23,5.1.2 Unbiased Esti
4、mates,24,5.1.2 Unbiased Estimates,25,5.1.3 Bayes Estimation (Bayes Learning),26,5.1.3 Bayes Estimation,27,5.1.3 Bayes Estimation,28,5.1.3 Bayes Estimation,29,5.1.3 Bayes Estimation,30,5.1.3 Bayes Estimation,31,5.1.3 Bayes Estimation,32,5.1.3 Bayes Estimation,0=0,0,33,5.1.3 Bayes Estimation,34,5.2 No
5、n-Parametric Estimation,35,5.2.1 Histogram Estimation,36,5.2.1 Histogram Estimation,37,5.2.1 Histogram Estimation,38,5.2.1 Histogram Estimation,39,5.2.1 Histogram Estimation,40,5.2.1 Histogram Estimation,41,5.2.1 Histogram Estimation,42,5.2.1 Histogram Estimation,43,5.2.2 Parzen Window Estimation (K
6、ernel),44,5.2.2 Parzen Window Estimation,45,5.2.2 Parzen Window Estimation,46,5.2.2 Parzen Window Estimation,47,5.2.2 Parzen Window Estimation,48,5.2.2 Parzen Window Estimation,49,5.2.2 Parzen Window Estimation,50,5.2.2 Parzen Window Estimation,51,5.2.2 Parzen Window Estimation,52,5.2.3 kN-Nearest-N
7、eighbour Estimation,53,5.2 Non-Parametric Estimation,54,Team Presentation,The focus of this years presentation is the use of Statistics and Computational Intelligence Methods for classification or clustering. Each group (at most 4 persons) is to select two of the approaches (one belongs to statistic
8、s method, another belongs to computational intelligence method) listed below, search the literature for recent articles on their use for classification or clustering, study them and prepare a presentation. The projects will be implementation (or use) of two (or more) method(s) from the selected appr
9、oach and testing on artificial and real data set.,55,Team Presentation,Statistics (Traditional) Approaches: Minimum Euclidean Distance (MED) Classifier Minimum Intra-Class Distance (MICD) Classifier The Bayesian Classifier The Maximum A Posteriori Probability (MAP) Classifier The Maximum Likelihood
10、(ML) Classifier k-Nearest Neighbor (KNN) Classifier Decision Tree Partitioning Clustering Algorithms Hierarchical Clustering Algorithms Density-Based Clustering Methods Grid-Based Clustering Methods,56,Team Presentation,Computational Intelligence Approaches: The Backpropagation Algorithm (BP) Radial
11、 Basis Function Networks (RBF) Support Vector Machines (SVM) Self-Organizing Maps (SOM) Adaptive Resonance Theory (ART) Swarm Intelligence (ANT or PSO) Fuzzy Theory,57,Team Presentation,The artificial data set: e.g. 2D4C data set: containing four standard 2D-Gaussian distributed clusters of 50 patte
12、rns each. The mean vectors are 0.2, 0.2T, 0.2, 0.8 T, 0.8, 0.2 T, and 0.8, 0.8 T . variances are all equal to 0.1. The real data set: (1) Iris Data set (from UCI) containing 3 classes of 150 instances total in a 4 dimensional space. (2) Wine Data set (from UCI) containing 3 classes of 178 instances
13、total in a 13 dimensional space.,58,Team Presentation,Each group will give a presentation on the classification or clustering approach they studied and the results of testing their method(s) on the data and some conclusions. Presentations will be 20-25 minutes using powerpoint. A copy of report shou
14、ld not exceed 20 pages of write up. Code listing can be added in Appendix. Each presentation should include the following:,59,Team Presentation,Brief review of literature on the methods of the selected Classification or Clustering. Description of the methods selected for implementation. Implementati
15、on: Data structures used, program structures, data representation. Testing: test cases using your own and the provided data sets and evaluation the performance. Discussion of results and conclusions: it is very important to provide a discussion on the use of the methods selected and discuss their su
16、itability and/or limitations for the application. References.,60,Project Report,The focus of the project is the research problems such as Statistical Pattern Recognition, Syntactic Pattern Recognition. Each student is to select one of the projects, search the literature for recent articles, study them and
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职业健康导师制师资培养体系
- 黑龙江2025年黑龙江省公安机关人民警察专项招录报考指南笔试历年参考题库附带答案详解
- 镇江2025年江苏镇江句容市农村订单定向培养医学生招聘31人笔试历年参考题库附带答案详解
- 重庆2025年重庆市忠县事业单位招聘71人笔试历年参考题库附带答案详解
- 西安2025年陕西西安建筑科技大学附属中学招聘笔试历年参考题库附带答案详解
- 舟山2025年浙江舟山医院招聘编外人员招聘8人笔试历年参考题库附带答案详解
- 深圳2025年广东深圳市光明区人力资源局招聘一般专干6人笔试历年参考题库附带答案详解
- 河池2025年广西河池市东兰县参加2025届河池学院毕业生双选活动招聘中小学教师笔试历年参考题库附带答案详解
- 楚雄2025年云南楚雄姚安县紧密型医共体招聘卫生专业技术人员笔试历年参考题库附带答案详解
- 徐州2025年江苏徐州新沂市部分学校选调教师170人笔试历年参考题库附带答案详解
- 2025年水晶手链市场需求分析
- CJ/T 3066-1997内磁水处理器
- 院内急重症快速反应小组
- 湖南省省情试题及答案
- 幕墙玻璃板块平整度检查
- 船舶与海上技术 海上安全 气胀式救生装置用充气系统 征求意见稿
- 红岩中考试题及答案
- 人民币银行结算账户工作指引
- 产房护士年终工作总结模版
- 2024-2025学年浙江省杭州市余杭区五年级(上)期末数学试卷(含答案)
- 【英语试卷+答案】2025厦门高二上 期末质检
评论
0/150
提交评论