版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Chapter 5 Estimation and Learning,2,Outline,Parametric Estimation Maximum Likelihood Estimation Unbiased Estimates Bayes Estimation Non-Parametric Estimation Histogram Estimation Parzen Window Estimation kN-Nearest-Neighbour Estimation,3,Estimation,4,5.1 Parametric Estimation,5,5.1 Parametric Estima
2、tion,6,5.1 Parametric Estimation,7,5.1 Parametric Estimation,8,5.1.1 Maximum Likelihood Estimation,9,5.1.1 Maximum Likelihood Estimation,10,5.1.1 Maximum Likelihood Estimation,11,5.1.1 Maximum Likelihood Estimation,12,5.1.1 Maximum Likelihood Estimation,13,5.1.1 Maximum Likelihood Estimation,14,5.1.
3、1 Maximum Likelihood Estimation,15,5.1.1 Maximum Likelihood Estimation,16,5.1.1 Maximum Likelihood Estimation,17,5.1.2 Unbiased Estimates,18,5.1.2 Unbiased Estimates,19,5.1.2 Unbiased Estimates,20,5.1.2 Unbiased Estimates,21,5.1.2 Unbiased Estimates,22,5.1.2 Unbiased Estimates,23,5.1.2 Unbiased Esti
4、mates,24,5.1.2 Unbiased Estimates,25,5.1.3 Bayes Estimation (Bayes Learning),26,5.1.3 Bayes Estimation,27,5.1.3 Bayes Estimation,28,5.1.3 Bayes Estimation,29,5.1.3 Bayes Estimation,30,5.1.3 Bayes Estimation,31,5.1.3 Bayes Estimation,32,5.1.3 Bayes Estimation,0=0,0,33,5.1.3 Bayes Estimation,34,5.2 No
5、n-Parametric Estimation,35,5.2.1 Histogram Estimation,36,5.2.1 Histogram Estimation,37,5.2.1 Histogram Estimation,38,5.2.1 Histogram Estimation,39,5.2.1 Histogram Estimation,40,5.2.1 Histogram Estimation,41,5.2.1 Histogram Estimation,42,5.2.1 Histogram Estimation,43,5.2.2 Parzen Window Estimation (K
6、ernel),44,5.2.2 Parzen Window Estimation,45,5.2.2 Parzen Window Estimation,46,5.2.2 Parzen Window Estimation,47,5.2.2 Parzen Window Estimation,48,5.2.2 Parzen Window Estimation,49,5.2.2 Parzen Window Estimation,50,5.2.2 Parzen Window Estimation,51,5.2.2 Parzen Window Estimation,52,5.2.3 kN-Nearest-N
7、eighbour Estimation,53,5.2 Non-Parametric Estimation,54,Team Presentation,The focus of this years presentation is the use of Statistics and Computational Intelligence Methods for classification or clustering. Each group (at most 4 persons) is to select two of the approaches (one belongs to statistic
8、s method, another belongs to computational intelligence method) listed below, search the literature for recent articles on their use for classification or clustering, study them and prepare a presentation. The projects will be implementation (or use) of two (or more) method(s) from the selected appr
9、oach and testing on artificial and real data set.,55,Team Presentation,Statistics (Traditional) Approaches: Minimum Euclidean Distance (MED) Classifier Minimum Intra-Class Distance (MICD) Classifier The Bayesian Classifier The Maximum A Posteriori Probability (MAP) Classifier The Maximum Likelihood
10、(ML) Classifier k-Nearest Neighbor (KNN) Classifier Decision Tree Partitioning Clustering Algorithms Hierarchical Clustering Algorithms Density-Based Clustering Methods Grid-Based Clustering Methods,56,Team Presentation,Computational Intelligence Approaches: The Backpropagation Algorithm (BP) Radial
11、 Basis Function Networks (RBF) Support Vector Machines (SVM) Self-Organizing Maps (SOM) Adaptive Resonance Theory (ART) Swarm Intelligence (ANT or PSO) Fuzzy Theory,57,Team Presentation,The artificial data set: e.g. 2D4C data set: containing four standard 2D-Gaussian distributed clusters of 50 patte
12、rns each. The mean vectors are 0.2, 0.2T, 0.2, 0.8 T, 0.8, 0.2 T, and 0.8, 0.8 T . variances are all equal to 0.1. The real data set: (1) Iris Data set (from UCI) containing 3 classes of 150 instances total in a 4 dimensional space. (2) Wine Data set (from UCI) containing 3 classes of 178 instances
13、total in a 13 dimensional space.,58,Team Presentation,Each group will give a presentation on the classification or clustering approach they studied and the results of testing their method(s) on the data and some conclusions. Presentations will be 20-25 minutes using powerpoint. A copy of report shou
14、ld not exceed 20 pages of write up. Code listing can be added in Appendix. Each presentation should include the following:,59,Team Presentation,Brief review of literature on the methods of the selected Classification or Clustering. Description of the methods selected for implementation. Implementati
15、on: Data structures used, program structures, data representation. Testing: test cases using your own and the provided data sets and evaluation the performance. Discussion of results and conclusions: it is very important to provide a discussion on the use of the methods selected and discuss their su
16、itability and/or limitations for the application. References.,60,Project Report,The focus of the project is the research problems such as Statistical Pattern Recognition, Syntactic Pattern Recognition. Each student is to select one of the projects, search the literature for recent articles, study them and
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州安顺关岭自治县就业局招聘城镇公益性岗位人员1人笔试考试参考题库附答案
- 崇左市市场监督管理局公开招聘所属事业单位编外聘用人员考试题库附答案
- 2025黑龙江哈尔滨启航劳务派遣有限公司派遣到哈尔滨工业大学发展战略研究中心招聘1人(公共基础知识)测试题附答案
- 浙江国企招聘2025台州市城乡规划设计研究院有限公司招聘工作人员7人备考题库附答案
- 2025年厦门辅警招聘考试真题必考题
- 滨州市惠民县人民政府法律顾问选聘20人参考题库附答案
- 2025年宜春辅警招聘考试题库附答案
- 安龙县兴晟众力劳务有限责任公司面向社会公开招聘派遣制工作人员考试题库附答案
- 2023年鹤壁能源化工职业学院单招职业适应性测试模拟测试卷附答案解析
- 2025年中铁西北科学研究院有限公司工程管理咨询中心招聘备考题库含答案解析(夺冠)
- 25秋国家开放大学《理工英语4》形考任务参考答案
- 口腔咨询基础话术
- 2025年初级煤矿综采安装拆除作业人员《理论知识》考试真题(新版解析)
- 文明单位申报表填写范例及审核指南
- 《中级财务会计》课程重点难点讲解(东北财经大学版)-课件
- DB61-T 1362-2020 海绵城市低影响开发雨水系统技术规范
- 慢性肾病治疗课件
- 国开2025年人文英语4写作形考答案
- 果园防草布采购合同范本
- 环卫除雪知识培训内容课件
- 《中药化学化学中药学专业》课程教学大纲
评论
0/150
提交评论