《5.1.4 合情推理与演绎推理的关系》课件.ppt_第1页
《5.1.4 合情推理与演绎推理的关系》课件.ppt_第2页
《5.1.4 合情推理与演绎推理的关系》课件.ppt_第3页
《5.1.4 合情推理与演绎推理的关系》课件.ppt_第4页
《5.1.4 合情推理与演绎推理的关系》课件.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、【课标要求】 1了解演绎推理的重要性,掌握演绎推理的基本模式 2并能运用演绎推理进行一些简单推理 3掌握合情推理和演绎推理的联系和差异 4了解合情推理和演绎推理在数学发现中的作用,合情推理与演绎推理的关系,1演绎推理:是由一般到特殊,按照严格的逻辑法则得到的一种必然性结论的推理过程,它的主要形式是 2三段论常用格式为:M是P,S是P;其中是 ,它提供了一个一般性原理;是 ,它指出了一个特殊对象;是 ,它根据一般原理,对特殊情况作出的判断,自学导引,三段论,S是M,大前提,小前提,结论,3在演绎推理中,只要大前提、小前提都是真实的,推理的形式是正确的,那么结论必是 的 4数学成果的发现往往是由

2、给出的,再由 给予证明,真实,合情推理,演绎推理,1三段论的基本格式是什么? 提示MP(M是P)(大前提)SM(S是M)(小前提)SP(S是P)(结论) 2三段论推理的依据,用集合的观点怎样来理解? 提示若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.,自主探究,提示从合情推理与演绎推理在认识事物的过程中所发挥的作用的角度考虑,二者是紧密联系的,合情推理的结论需要演绎推理的论证,而演绎推理的内容一般是通过合情推理获得的就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结论、证明思路等的发现,主要靠合情推理因此,我们不仅要学会证明,也要学会猜

3、想,3合情推理与演绎推理有什么联系?,下面说法正确的有() 演绎推理是由一般到特殊的推理;演绎推理得到的结论一定是正确的;演绎推理一般模式是“三段论”形式;演绎推理的结论的正误与大前提、小前提和推理形式有关 A1个 B2个 C3个 D4个 解析错,正确,故选C. 答案C,预习测评,1,解析两条直线平行,同旁内角互补(大前提) A与B是两条平行直线的同旁内角(小前提) AB180(结论) 答案A,答案增函数的定义,3用演绎推理证明“yx2(x0)是增函数”时的大前提为_,1演绎推理的含义 数学理论都是用演绎推理组织起来的,每一个数学理论都是一个演绎体系,演绎推理是由一般到特殊的推理,是一种必然性

4、推理,演绎推理的前提与结论之间有蕴涵关系,即演绎推理的结论不会超出前提所界定的范围只要前提是真实的,推理的形式是正确的,那么结论必是真实的,但是错误的前提可能导致错误的结论,要点阐释,三段论的含义 我们在解答题和证明题中所用到的推理,一般都是演绎推理,它的基本模式是三段论 (1)大前提:已知的一般原理例如数学中的公理、定理、性质等,物理中的定律、性质等凡是经过实践检验是正确的都可以当作大前提 (2)小前提:所研究的特殊情况,即在大前提范围内的某一特殊情形 (3)结论:根据一般原理,对特殊情况做出的判断,2,注意:三段论推理的根据,用集合的观点来讲就是:若集合M中所有元素都具有性质P,S是M的子

5、集,那么S中所有元素都具有性质P. 演绎推理是一个必然性推理,演绎推理的前提与结论之间有蕴涵关系,因而,只要大前提、小前提都是真实的,推理的形式是正确的,那么结论必是真实的但错误的前提可能导致错误的结论,合情推理与演绎推理的关系 合情推理包括归纳推理和类比推理;而演绎推理的主要形式是“三段论式推理” 从推理形式上看,归纳是由部分到整体、特殊到一般的推理,类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理 从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确,3,把下列推理写成三段论的形式 (1)所有的金属都能

6、导电,铀是金属,所以,铀能够导电; (2)一切奇数都不能被2整除,(21001)是奇数,所以(21001)不能被2整除; (3)三角函数都是周期函数,ytan 是三角函数,所以ytan 是周期函数,典例剖析,题型一用三段论的形式表示演绎推理,【例1】,解(1)所有的金属都能导电大前提(一般原理) 铀是金属小前提(特殊情况) 所以铀能够导电结论(对特殊情况的判断) (2)一切奇数都不能被2整除大前提 (21001)是奇数小前提 所以(21001)不能被2整除结论 (3)大前提:三角函数都是周期函数, 小前提:ytan 是三角函数, 结论:ytan 是周期函数,点评用三段论写推理过程中,关键是明确

7、大前提、小前提,有些推理有时省略了大前提,寻找大前提时,可找一个使结论成立的充分条件作为大前提,把“函数yx2x1的图象是一条抛物线”写成三段论的形式 解二次函数的图象是一条抛物线,(大前提) 函数yx2x1是二次函数,(小前提) 所以,yx2x1的图象是一条抛物线(结论),1,证明函数f(x)x4x3x2x1的图象恒在x轴的上方 证明当x0; 当x1时,f(x)x3(x1)x(x1)10 综上所述,函数f(x)的图象恒在x轴的上方 点评对x所有可能的取值都给出了f(x)为正数的证明,所以断定f(x)恒为正数,题型二演绎推理的运用,【例2】,2若a,b是正实数,且ab,试比较aabb与abba

8、的大小,在平面内,已知直线l与两点A,B,在直线l上求一点P,使(1)A,B在直线l同侧时,PAPB最小; (2)A、B在直线l两侧时,|PAPB|最大(线段AB中点不在l上),题型三用合情推理与演绎推理解决问题,【例3】,以上结论用演绎法证明如下: 在直线l上任取异于P点的一点P, 连接PA,PA,PA,PB, 则PAPBPAPB, 在PAB中,PBPAAB PAPBPAPB, PAPBPAPB, 点P是使PAPB最小的点,(2)与(1)类似,作点A关于直线l的对称点A,连接AB并延长交l于点P,则点P就是使|PAPB|最大的点 下面用演绎法证明 在直线l上任取异于点P的一点P,连接PA,PA,PB,AP, 则|PAPB|PAPB|在PAB中, |PAPB|AB|PAPB| |PAPB|, |PAPB|PAPB|, 点P是使|PAPB|最大的点,点评在处理探究性问题时,先通过合情推理得到猜想,然后用演绎推理的方法证明结论的正确性,“因为过不共线的三点有且仅有一个平面(大前提),而A、B、C为空间三点(小前提),所以过A、B、C三点只能确定一个平面(结论)” 上述推理的结论正确吗?为什么? 错解符合三段论推理形式证明,故命题正确 错解分析只有在大前提、小前提、推理过程都正确的情况下,结论才一定正确,否则,结论不一定正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论