下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课题: 5.1.3解三角形小结复习高中数学必修5 一、知识点总结【正弦定理】1正弦定理: (R为三角形外接圆的半径).2.正弦定理的一些变式:;(4)3两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解)4.在中,已知a,b及A时,解得情况:解法一:利用正弦定理计算解法二:A为锐角A为钝角或直角图形关系式解的个数一解两解一解一解无解【余弦定理】1余弦定理: 2.推论:.设、是的角、的对边,则:若,则;若,则;若,则3.两类余弦定理解三角形的问题:(1)已知三边求三角. (2)已知两边和他们的夹角,求第三
2、边和其他两角.【面积公式】已知三角形的三边为a,b,c, 1.(其中为三角形内切圆半径)2.设,(海伦公式)【三角形中的常见结论】(1)(2) ,;,(3)若若(大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边(5)三角形中最大角大于等于,最小角小于等于(6) 锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方.钝角三角形最大角是钝角最大角的余弦值为负值(7)中,A,B,C成等差数列的充要条件是.(8) 为正三角形的充要条件是A,B,C成等差数列,且a,b,c成等比数列.二、题型汇总题型1【判定三角形形状】判断三角形的类型(
3、1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在中,由余弦定理可知:(注意:)(3) 若,则A=B或.例1.在中,且,试判断形状.题型2【解三角形及求面积】一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在中,求的值例3.在中,内角对边的边长分别是,已知,()若的面积等于,求;()若,求的面积题型3【证明等式成立】证明等式成立的方法:(1)左右,(2)右左,(3)左右互相推.例4.已知中,角的对边分别为,求证:. 题型4【解三角形在实际中的应用】仰角 俯角 方向角 方位角 视角例5如图所示,货轮在海上以40km/h的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140的方向航行,为了确定船位,船在B点观测灯塔
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专职司机2024劳动协议模板版
- 2025年厂区物业服务与设施更新改造合同4篇
- 2025年茶叶原料供应长期合作协议4篇
- 专业2024年注塑车间承包合同2篇
- 2025年度智能交通信号控制系统合同4篇
- 二零二五年度厂房租赁及环保设施升级合同3篇
- 2024铁路危险品运输协议模板版
- 专项采购附加合同(2024修订版)版B版
- 二零二四塔吊操作人员劳务承包高空作业服务协议3篇
- 二零二五年度新型环保材料研发与市场拓展合同3篇
- 大型活动联合承办协议
- 工程项目采购与供应链管理研究
- 2024年吉林高考语文试题及答案 (2) - 副本
- 拆除电缆线施工方案
- 搭竹架合同范本
- Neo4j介绍及实现原理
- 焊接材料-DIN-8555-标准
- 工程索赔真实案例范本
- 重症医学科运用PDCA循环降低ICU失禁性皮炎发生率品管圈QCC持续质量改进成果汇报
- 个人股权证明书
- 医院运送工作介绍
评论
0/150
提交评论