2.3《双曲线》(第二课时).ppt_第1页
2.3《双曲线》(第二课时).ppt_第2页
2.3《双曲线》(第二课时).ppt_第3页
2.3《双曲线》(第二课时).ppt_第4页
2.3《双曲线》(第二课时).ppt_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.3.2 双曲线的简单几何性质(1),2.2 双曲线,通过动画展示通风塔的截面图是双曲线,培养学生善于观察,热爱生活的良好品质,同时激发了学生探索新知的欲望,充分调动学生学习的积极性和主动性. 运用类比的思想,类比椭圆的性质学习双曲线的性质,注意双曲线的性质比椭圆多一个渐进线的性质 例1是探讨双曲线的常见性质;例2是求通风塔的形状双曲线方程;双曲线和之前学的椭圆有很多相似之处,也有很多区别,在教学过程中着重采用了双曲线和椭圆对比、对照的方式讲解.其一是便于学生理解,其二是通过对比、对照让学生记忆深刻,不易混淆.,通风塔与双曲线,| |MF1|-|MF2| | =2a( 2a|F1F2|),F

2、 ( c, 0) F(0, c),复习回顾,1.双曲线的定义及标准方程,o,Y,X,关于X,Y轴, 原点对称,(a,0),(0,b),(c,0),A1A2 ; B1B2,|x|a,|y|b,F1,F2,A1,A2,B2,B1,2.椭圆的图像与性质:,2、对称性,研究双曲线 的简单几何性质,1、范围,关于x轴、y轴和原点都是对称的.,x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。,(-x,-y),(-x,y),(x,y),(x,-y),3、顶点,(1)双曲线与对称轴的交点,叫做双曲线的顶点.,如图,线段 叫做双曲线的实轴,它的长为2a,a叫做实半轴长; 线段 叫做双曲线的虚轴,

3、它的长为2b,b叫做双曲线的虚半轴长.,(2),4、渐近线,拖动下方中间的两个点绘制双曲线图像,体会双曲线和渐近线的关系,5、离心率,离心率。,ca0,e 1,e是表示双曲线开口大小的一个量,e越大开口越大!,(1)定义:,(2)e的范围:,(3)e的含义:,几何画板展示离心率与a,b,c及双曲线开口大小的关系(拖动三角形的端点使a,b,c变化),焦点在x轴上的双曲线的几何性质,双曲线标准方程:,Y,X,1、,范围:,xa或x-a,2、对称性:,关于x轴,y轴,原点对称。,3、顶点:,A1(-a,0),A2(a,0),4、轴:实轴 A1A2 虚轴 B1B2,A1,A2,B1,B2,5、渐近线方

4、程:,6、离心率:,e=,(1)范围:,(4)渐近线:,(5)离心率:,或,或,关于坐标 轴和 原点 都对 称,解:把方程化为标准方程,可得:实半轴长a=4,虚半轴长b=3,焦点坐标是(0,-5),(0,5),离心率:,渐近线方程:,典例展示,例2、双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12m,上口半径为13m,下口半径为20m,高55m.选择适当的坐标系,求出此双曲线的方程(精确到1m).,3如图,axyb0和bx2ay2ab(ab0)所表示的曲线只可能是(),B,C,椭圆与双曲线的比较,关于x轴、y轴、原点对称,图形,方程,范围,对称性,顶点,离心率,A1(- a,0),A2(a,0),A1(0,-a),A2(0,a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论