1.3 直角三角形全等的判定.ppt_第1页
1.3 直角三角形全等的判定.ppt_第2页
1.3 直角三角形全等的判定.ppt_第3页
1.3 直角三角形全等的判定.ppt_第4页
1.3 直角三角形全等的判定.ppt_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、,课首,第1章 直角三角形,1.3 直角三角形全等的判定,岳纸学校 付 静,义务教育教科书 湘教版八年级数学下册,1. 判定一般三角形全等的方法有哪几种?,答: S.S.S.; S.A.S.; A.S.A.; A.A.S. .,2. 若这两个三角形是直角三角形,那么, 这些判定方法适用吗?,答: 适用.,任意画出一个RtABC,使C 90,再画一个RtABC ,使 BCBC,ABAB,把画好的RtABC 剪下,放到RtABC上,看看它们是否全等?,RtABC RtABC,画法: 1. 作MC N = 90 2. 在射线CM上取BCBC. 3. 以为B圆心,AB为半径画弧,交射线CN 于点A 4

2、. 连接AB .,A,B,两个直角三角形全等的判定定理: 斜边和一直角边对应相等的两个直角三角形全等.(可以简写成“斜边、直角边定理”或“H.L.”),注意:“H.L.”是仅适用于直角三角形的特殊方法. 应用 H.L. 判定时,虽只有两个条件,但必须先有 两个直角三角形. 书写格式为: 在Rt_和Rt_中, Rt_Rt_(H.L.),例1. 已知:ABAC,CD AC,ADCB, 问ABC 与CDA全等吗? 为什么?, AD = CB(已知) AC = CA(公共边), RtABD RtACD (H.L.), A BAC,CD AC, 1 =2 = 90,解:ABC CDA,在 ABC和CDA

3、中,例2如图,已知:ACBC,BDAD, AC = BD. 求证:BC=AD.,证明: ACBC,BDAD. C=D=90. 在RtABC 与RtBAD 中 AB=BA,AC=BD. RtABC RtBAD(H.L.),D,B,2. 已知:如图,在ABC和 ABC中,CD、 CD分别 是高,并且ACAC ,CD CD,ACBACB. 求证:ABCABC.,证明: CD、CD分别是高, ADC= ADC= 90. 在RtADC和Rt ADC中 ACAC,CDCD Rt ADCRtADC (H.L.) A A. 在ABC与ABC中 A A,ACAC. ACB ACB ABCA BC (A.S.A.

4、),3. 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角ABC和DFE大小有什么关系?,解:在RtABC和RtDEF中, BC=EF,AC=DF., RtABCRtDEF (H.L.).,ABC = DEF (全等三角形对应角相等). DEF+DFE=90 (直角三角形两角互余) ABC+DFE=90 (等量代换),4. 如图,ACB = BDA = 90. 要说明 ACB BDA,需要再补充几个条件? 应补充什么条件?把它们分别写出来,有几 种不同的方法就写几种.,判断直角三角形全等条件,三边对应相等 (SSS) 一锐角和它的邻边对应相等 (

5、ASA) 一锐角和它的对边对应相等 (AAS) 两直角边对应相等 (SAS) 斜边和一条直角边对应相等 (HL),直角三角形是特殊的三角形,所以不仅有一般三角 形判定全等的方法,还有直角三角形特有的判定方 法“H.L.”.,想一想,你能够用几种方法判定两个直角 三角形全等?,我们应根据具体问题的实际情况选择判断两个 直角三角形全等的方法., 因为“HL”仅适用直角三角形, 书写格式应为: 在RtABC与RtDEF中, AB = DE, AC = DF. RtABC RtDEF (HL),在使用“HL”时,同学们应注意什么?, “HL”是仅适用于直角三角形的特殊方法., 注意对应相等.,1. 直角三角形全等的判定定理: SAS, AAS, ASA, SSS, HL. 2. 直角三角形全等的判定条

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论