江苏省苏州市张家港市外国语学校2025届数学高二上期末经典模拟试题含解析_第1页
江苏省苏州市张家港市外国语学校2025届数学高二上期末经典模拟试题含解析_第2页
江苏省苏州市张家港市外国语学校2025届数学高二上期末经典模拟试题含解析_第3页
江苏省苏州市张家港市外国语学校2025届数学高二上期末经典模拟试题含解析_第4页
江苏省苏州市张家港市外国语学校2025届数学高二上期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市张家港市外国语学校2025届数学高二上期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知公差不为0的等差数列中,(m,),则mn的最大值为()A.6 B.12C.36 D.482.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件3.经过点,且被圆所截得的弦最短时的直线的方程为()A. B.C. D.4.设,,则与的等比中项为()A. B.C. D.5.下列命题中正确的是()A.抛物线的焦点坐标为B.抛物线的准线方程为x=−1C.抛物线的图象关于x轴对称D.抛物线的图象关于y轴对称6.抛物线y2=4x的焦点坐标是A.(0,2) B.(0,1)C.(2,0) D.(1,0)7.双曲线型自然通风塔外形是双曲线的一部分绕其虚轴旋转所成的曲面,如图所示,它的最小半径为米,上口半径为米,下口半径为米,高为24米,则该双曲线的离心率为()A.2 B.C. D.8.已知点是抛物线上的一点,F是抛物线的焦点,则点M到F的距离等于()A.6 B.5C.4 D.29.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分又不必要条件10.如图是抛物线形拱桥,当水面在n时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为()A. B.C. D.11.已知,是双曲线的左右焦点,过的直线与曲线的右支交于两点,则的周长的最小值为()A. B.C. D.12.若方程表示焦点在y轴上的双曲线,则k的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的左、右焦点分别为,,P为椭圆上一点,满足(O为坐标原点).若,则椭圆的离心率为______14.设,,若将函数的图像向左平移个单位能使其图像与原图像重合,则正实数的最小值为___________.15.如图,已知AB,CD分别是圆柱上、下底面圆的直径,且,若该圆柱的底面圆直径是其母线长的2倍,则异面直线AC与BD所成角的余弦值为______16.已知点,,点P在x轴上,且,则点P的坐标为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面是直角梯形,,,,分别是棱,的中点(1)证明:平面;(2)若,且四棱锥的体积是6,求三棱锥的体积18.(12分)某地区2021年清明节前后3天每天下雨的概率为50%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率.用随机数x(,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;(2)从2012年到2020年该地区清明节当天降雨量(单位:)如表:(其中降雨量为0表示没有下雨).时间2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221经研究表明:从2012年至2021年,该地区清明节有降雨的年份的降雨量y与年份t成线性回归,求回归直线方程,并计算如果该地区2021年()清明节有降雨的话,降雨量为多少?(精确到0.01)参考公式:,参考数据:,,,19.(12分)已知圆内有一点,过点P作直线l交圆C于A,B两点.(1)当P为弦的中点时,求直线l的方程;(2)若直线l与直线平行,求弦的长.20.(12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直,,,.(1)求点C到平面的距离;(2)线段上是否存在点F,使与平面所成角正弦值为,若存在,求出,若不存在,说明理由.21.(12分)已知椭圆经过点,左焦点为.(Ⅰ)求椭圆的方程;(Ⅱ)若是椭圆的右顶点,过点且斜率为的直线交椭圆于两点,求的面积.22.(10分)已知幂函数在上单调递减,函数的定义域为集合A(1)求m的值;(2)当时,的值域为集合B,若是成立的充分不必要条件,求实数的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由等差数列的性质可得,再应用基本不等式求mn的最大值,注意等号成立条件.【详解】由题设及等差数列的性质知:,又m,,所以,即,当且仅当时等号成立.所以mn的最大值为.故选:C2、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.3、C【解析】当是弦中点,她能时,弦长最短.由此可得直线斜率,得直线方程【详解】根据题意,圆心为,当与直线垂直时,点被圆所截得的弦最短,此时,则直线的斜率,则直线的方程为,变形可得,故选:C.【点睛】本题考查直线与圆相交弦长问题,掌握垂径定理是求解圆弦长问题的关键4、C【解析】利用等比中项的定义可求得结果.【详解】由题意可知,与的等比中项为.故选:C.5、C【解析】根据抛物线的性质逐项分析可得答案.【详解】抛物线的焦点坐标为,故A错误;抛物线的准线方程为,故B错误;抛物线的图象关于x轴对称,故C正确,D错误;故选:C.6、D【解析】的焦点坐标为,故选D.【考点】抛物线的性质【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单几何性质是我们要重点掌握的内容,一定要熟记掌握7、A【解析】以的中点О为坐标原点,建立平面直角坐标系,设双曲线的方程为,设,,代入双曲线的方程,求得,得到,进而求得双曲线的离心率.【详解】以的中点О为坐标原点,建立如图所示的平面直角坐标系,则,设双曲线的方程为,则,可设,,又由,在双曲线上,所以,解得,,即,所以该双曲线的离心率为.故选:A.第II卷8、B【解析】先求出,再利用焦半径公式即可获解.【详解】由题意,,解得所以故选:B.9、B【解析】根据充分条件和必要条件的定义判断即可求解.【详解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分条件,故选:B.10、D【解析】由题建立平面直角坐标系,设抛物线方程为,结合条件即求.【详解】建立如图所示的直角坐标系:设抛物线方程为,由题意知:在抛物线上,即,解得:,,当水位下降1米后,即将代入,即,解得:,∴水面宽为米.故选:D.11、C【解析】根据双曲线的定义和性质,当弦垂直于轴时,即可求出三角形的周长的最小值.【详解】由双曲线可知:的周长为.当轴时,周长最小值为故选:C12、B【解析】由条件可得,即可得到答案.【详解】方程表示焦点在y轴上的双曲线所以,即故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】由可得,再结合椭圆的性质可得为直角三角形,由题意设,则,由勾股定理可得,再结合椭圆的定义可求出离心率【详解】因为,所以,所以,因为,所以,所以为直角三角形,即,所以设,则,所以,得,因为则,所以,所以,即离心率为,故答案为:14、【解析】根据正弦型函数图像平移法则和正弦函数性质进行解题.【详解】解:由题意得:函数的图像向左平移个单位后得:该函数与原函数图像重合故可知,即故当时,最小正实数.故答案为:15、.【解析】利用空间向量夹角公式进行求解即可.【详解】取CD的中点O,以O为原点,以CD所在直线为x轴,以底面内过点O且与CD垂直的直线为y轴,以过点O且与底面垂直的直线为z轴,建立如图所示的空间直角坐标系设,则,,,,,,所以,所以异面直线AC与BD所成角的余弦值为故答案为:16、【解析】设,由,可得,求解即可【详解】设,由故解得:则点P的坐标为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2)2.【解析】(1)取的中点,连接,.运用面面平行的判定和性质可得证;(2)过点作,垂足为,连接,,设点到平面的距离为,根据棱锥的体积求得,再利用三棱锥的体积与三棱锥的体积相等,三棱锥的体积与三棱锥的体积相等,可求得答案.【小问1详解】证明:如图,取的中点,连接,因为,分别是棱,的中点,所以,又平面,平面,所以平面因为,且,分别是棱,的中点,所以,又平面,平面,所以平面因为平面,且,所以平面平面因为平面,所以平面【小问2详解】解:过点作,垂足为,连接,,则四边形是正方形,从而因为,所以,则,从而直角梯形的面积设点到平面的距离为,则四棱锥的体积,解得因为三棱锥的体积与三棱锥的体积相等,所以三棱锥的体积因为平面,所以三棱锥的体积与三棱锥的体积相等,所以三棱锥的体积为218、(1),;(2);该地区2020年清明节有降雨的话,降雨量为20.2mm【解析】(1)利用概率模拟求概率;(2)套用公式求回归直线方程即可.【详解】解:(1)由题意可知,,解得,即表示下雨,表示不下雨,所给的20组数据中714,740,491,272,073,445,435,027,共8组表示3天中恰有两天下雨,故所求的概率为;(2)由题中所给的数据可得,,所以,,所以回归方程为,当时,,所以该地区2020年清明节有降雨的话,降雨量为20.2mm【点睛】求线性回归方程的步骤:①求出;②套公式求出;③写出回归方程;④利用回归方程进行预报;19、(1)(2)【解析】(1)由题意,,求出直线l的斜率,利用点斜式即可求解;(2)由题意,利用点斜式求出直线l的方程,然后由点到直线的距离公式求出弦心距,最后根据弦长公式即可求解.小问1详解】解:由题意,圆心,P为弦的中点时,由圆的性质有,又,所以,所以直线l的方程为,即;【小问2详解】解:因为直线l与直线平行,所以,所以直线的方程为,即,因为圆心到直线的距离,又半径,所以由弦长公式得.20、(1)(2)存在,1【解析】(1)由题意建立空间直角坐标系,求得平面向量的法向量和相应点的坐标,利用点面距离公式即可求得点面距离(2)假设满足题意的点存在且满足,由题意得到关于的方程,解方程即可确定满足题意的点是否存在【小问1详解】解:如图所示,取中点,连结,,因为三角形是等腰直角三角形,所以,因为面面,面面面,所以平面,又因为,所以四边形是矩形,可得,则,建立如图所示的空间直角坐标系,则:据此可得,设平面的一个法向量为,则,令可得,从而,又,故求点到平面的距离【小问2详解】解:假设存在点,,满足题意,点在线段上,则,即:,,,,,据此可得:,,从而,,,,设与平面所成角所成的角为,则,整理可得:,解得:或(舍去)据此可知,存在满足题意的点,点为的中点,即21、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由椭圆的定义求出的值,由求出,代入,得到椭圆的方程;(Ⅱ)由点斜式求出直线的方程,设,联立直线与椭圆方程,求出的值,再算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论