【步步高 学案导学设计】2014-2015学年高中数学(苏教版,必修四) 第一章三角函数 1.3.3(二) 课时作业]_第1页
【步步高 学案导学设计】2014-2015学年高中数学(苏教版,必修四) 第一章三角函数 1.3.3(二) 课时作业]_第2页
【步步高 学案导学设计】2014-2015学年高中数学(苏教版,必修四) 第一章三角函数 1.3.3(二) 课时作业]_第3页
【步步高 学案导学设计】2014-2015学年高中数学(苏教版,必修四) 第一章三角函数 1.3.3(二) 课时作业]_第4页
【步步高 学案导学设计】2014-2015学年高中数学(苏教版,必修四) 第一章三角函数 1.3.3(二) 课时作业]_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、13.3函数yAsin(x)的图象(二)课时目标1会用“五点法”画函数f(x)Asin(x)的图象.2.明确函数f(x)Asin(x)(A、为常数,A0,0)中常数A、的物理意义理解振幅、频率、相位、初相的概念.3.了解函数f(x)Asin(x)图象的对称性(如对称轴,对称中心)1简谐振动简谐振动yAsin(x)中,_叫做振幅,周期T_,频率f_,相位是_,初相是_2函数yAsin(x) (A0,0)的性质如下:定义域R值域周期性T_奇偶性_时是奇函数;_时是偶函数;当(kZ)时是_函数单调性单调增区间可由_得到,单调减区间可由_得到一、填空题1若函数yAsin(x)

2、(A0,0)为偶函数,则满足的条件是_2函数y3sin (x0)的初相是_3函数ysin与y轴最近的对称轴方程是_4.函数ysin(x) (xR,0,00)个单位,正好关于y轴对称,则的最小值为_6已知函数ysin(x)(0,|0)得到的图象恰好关于x对称,则的最小值为_8如图是函数yAsin(x)(xR)在区间,上的图象为了得到这个函数的图象,只要将ysin x(xR)的图象上所有的点向_平移_个单位长度,再把所得各点的横坐标缩短到原来的_倍,纵坐标不变9设函数f(x)2sin,若对于任意xR,都有f(x1)f(x)f(x2)成立,则|x1x2|的最小值为_10关于f(x)4sin (xR)

3、,有下列命题由f(x1)f(x2)0可得x1x2是的整数倍;yf(x)的表达式可改写成y4cos;yf(x)图像关于对称;yf(x)图像关于x对称其中正确命题的序号为_(将你认为正确的都填上)二、解答题11如图为函数y1Asin(x) (A0,0,|0,0)上的一个最高点的坐标为,此点到相邻最低点间的曲线与x轴交于点,若.(1)试求这条曲线的函数表达式;(2)用“五点法”画出(1)中函数在0,上的图象能力提升13如果函数ysin 2xacos 2x的图象关于直线x对称,那么a_.14已知函数f(x)sin(x) (0,0)是R上的偶函数,其图象关于点M对称,且在区间上是单调函数,求和的值1由函

4、数yAsin(x)的部分图象确定解析式关键在于确定参数A,的值(1)一般可由图象上的最大值、最小值来确定|A|.(2)因为T,所以往往通过求周期T来确定,可通过已知曲线与x轴的交点从而确定T,即相邻的最高点与最低点之间的距离为;相邻的两个最高点(或最低点)之间的距离为T.(3)从寻找“五点法”中的第一零点(也叫初始点)作为突破口以yAsin(x)(A0,0)为例,位于单调递增区间上离y轴最近的那个零点最适合作为“五点”中的第一个点2在研究yAsin(x)(A0,0)的性质时,注意采用整体代换的思想如,它在x2k(kZ)时取得最大值,在x2k(kZ)时取得最小值13.3函数yAsin(x)的图象(二)知识梳理1Ax2A,Ak (kZ)k (kZ)非奇非偶2kx2k (kZ)2kx2k(kZ)作业设计1k (kZ)2解析由诱导公式可知y3sin3sin,故初相为.3x解析令2xk(kZ),x(kZ)由k0,得x;由k1,得x.4ysin解析由,解得.5.解析函数向右平移个单位得ycosc

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论