全面的图像滤波方面课件_第1页
全面的图像滤波方面课件_第2页
全面的图像滤波方面课件_第3页
全面的图像滤波方面课件_第4页
全面的图像滤波方面课件_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、,What is noise?,s = 1,3,5,Gaussian filter,s = 2,s = 4,Gaussian smoothing,p1,p2,p1,p1,p1,p2,P2,P1,G,Gx,Gaussian and its 2 derivatives,LOG operator,Local image characteristics based on: Scale Frequency Direction,q,Fourier basis,Spatial domain,Frequency domain,1/s 1/s,s s,Even (Symmetric),Odd (antisymm

2、etic),Gabor Filter Example,High frequency along axis,Lower frequency off-axis,Even lower frequency,Scale small compared to inverse frequency,s = 2 f = 1/6,Odd Gabor filter,First Derivative,Even Gabor filter,Laplacian,Separable, low-pass filter,Not-separable, approximated by A difference of Gaussians

3、. Output of convolution is Laplacian of image: Zero-crossings correspond to edges,Separable, output of convolution is gradient at scale s:,Gaussian,Derivatives of Gaussian,Directional Derivatives,Laplacian,Fourier Transform,F(g)(u,v) = component of image at frequency sqrt(u2+v2) in direction (u,v) T

4、ransform of Gaussian s is Gaussian 1/s,Output of convolution is magnitude of derivative in direction q. Filter is linear combination of derivatives in x and y,Steerability(可操控性),Generalization of property of derivatives: F is steerable if the rotated filter can be expressed as a linear combination o

5、f basis filters.,Gabor Filters,Compute the local contribution of frequency in the direction (kx,ky) at scale s. For s large compared to 1/f, even filters approximate 2nd derivative, odd filters approximate 1st derivative.,Special case of Gabor wavelets if s and f restricted to powers of 2,Gaussian Pyramids,Gaussian smooth image and subsample at each stage,Compute Laplacian by difference of Gaussian at each stage,Laplacian Pyramids,Scale-Space,Convert the image f(x,y) to a continuous funct

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论