版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、贵阳市高三上学期期中数学试卷(理科)(I)卷姓名:_ 班级:_ 成绩:_一、 选择题 (共12题;共24分)1. (2分) 是方程ax2+y2=c表示椭圆或双曲线的 ( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 不充分不必要条件2. (2分) 给出下列命题 实数的共轭复数一定是实数;满足|zi|+|z+i|=2的复数z的轨迹是椭圆;若mZ,i2=1,则im+im+1+im+2+im+3=0;若“a,b,c是不全相等的实数”,则(ab)2+(bc)2+(ca)20;若“a,b,c是不全相等的实数”,ab,bc,ca不能同时成立其中正确命题的序号是( )A . B .
2、C . D . 3. (2分) (2020银川模拟) 定义: 表示 的解集中整数的个数.若 ,且 ,则实数 的取值范围是( ) A . B . C . D . 4. (2分) (2017高二下咸阳期末) 完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1人完成这项工作,一共有多少种选法?( ) A . 5B . 4C . 9D . 205. (2分) 函数f(x)的图象向右平移1个单位长度,所得图象与y=ex关于y轴对称,则f(x)=( )A . B . C . D . 6. (2分) 对于函数f(x)=asinx+bx+c(其中,a,bR,cZ
3、),选取a,b,c的一组值计算f(1)和f(1),所得出的正确结果一定不可能是( )A . 4和6B . 3和1C . 2和4D . 1和27. (2分) 若集合M=3,4,5,6,7,8,x|x2-5x+40则( )A . 3B . ,C . 3x5D . 3、4、58. (2分) 函数 的图象的一条对称轴方程为( ) A . B . C . D . 9. (2分) 若函数在x=a处取最小值,则a( )A . 1B . 1C . 3D . 410. (2分) (2017高二下故城期末) 已知 且 ,若函数 在区间 上是增函数,则函数 的图象是( ) A . B . C . D . 11. (
4、2分) (2016高二下赣州期末) 设点P在曲线 上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A . 1ln2B . C . 1+ln2D . 12. (2分) (2018银川模拟) 集合 ,若 ,则实数 的值是( ) A . 1B . 2C . 3D . 2或3二、 填空题 (共4题;共4分)13. (1分) 里氏地震M的计算公式为:M=lgAlgA0 , 其中A测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅,则7级地震的最大振幅是4级地震最大振幅的_倍14. (1分) 对于任意实数和 b 不等式恒成立,则实数x的取值范围是_15. (1分) 函数y= (x1)的值
5、域是_ 16. (1分) (2016高二上温州期末) 已知函数f(x)=x|2xa|,g(x)= (aR),若0a12,且对任意t3,5,方程f(x)=g(t)在x3,5总存在两不相等的实数根,求a的取值范围_ 三、 解答题 (共6题;共65分)17. (5分) (2017高一下怀仁期末) 如图,在 中, , ,点 在 边上,且 , (I)求 ;(II)求 的长18. (10分) (2018高一上林芝月考) 已知集合 , . (1) 若 ,求 ;(2) 若集合 不是空集,且 ,求实数 的取值范围. 19. (15分) (2016高一下浦东期中) 已知函数 (1) a的值为多少时,f(x)是偶函
6、数? (2) 若对任意x0,+),都有f(x)0,求实数a的取值范围 (3) 若f(x)在区间0,+)上单调递增,求实数a的取值范围 20. (10分) (2017高三上定西期中) 已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称 (1) 求证:f(x)是周期为4的周期函数; (2) 若f(x)= (0x1),求x5,4时,函数f(x)的解析式 21. (10分) (2016高一下无锡期末) 政府鼓励创新、创业,银行给予低息贷款一位大学毕业生向自主创业,经过市场调研、测算,有两个方案可供选择 方案1:开设一个科技小微企业,需要一次性贷款40万元,第一年获利是贷款额的10
7、%,以后每年比上一年增加25%的利润方案2:开设一家食品小店,需要一次性贷款20万元,第一年获利是贷款额的15%,以后每年比上一年增加利润1.5万元两种方案使用期限都是10年,到期一次性还本付息两种方案均按年息2%的复利计算(参考数据:1.259=7.45,1.2510=9.3,1.029=1.20,1.0210=1.22)(1) 10年后,方案1,方案2的总收入分别有多少万元? (2) 10年后,哪一种方案的利润较大? 22. (15分) 定义在(0,+)上的函数f(x),对于任意的m,n(0,+),都有f(mn)=f(m)+f(n)成立,当x1时,f(x)0 (1) 求证:1是函数f(x)的零点; (2) 求证:f(x)是(0,+)上的减函数; (3) 当 时,解不等式f(ax+4)1 第 10 页 共 10 页参考答案一、 选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年咨询服务与技术服务合同
- 2024年个人借款合同履约保证合同版B版
- 二零二四年度商品房屋买卖合同
- 江南大学《高分子化学与物理基础》2021-2022学年第一学期期末试卷
- 江南大学《电工学基础》2022-2023学年第一学期期末试卷
- 佳木斯大学《形势与政策1》2021-2022学年第一学期期末试卷
- 2024商铺居间合同模板
- 暨南大学《音乐欣赏》2021-2022学年第一学期期末试卷
- 济宁学院《形式逻辑》2021-2022学年第一学期期末试卷
- 基于二零二四年度物联网技术的智能家居控制系统开发合同2篇
- 电气测量技术
- 被动语态讲解公开课(课堂PPT)
- 商业发票模板(INVOICE)
- 英语希望之星决赛看图说话小作文.ppt
- 设计开发部诚信因素识别评价表和目标指标方案
- 膝关节韧带损伤PPT课件
- 《校园心理剧》PPT课件.ppt
- 六年级上册精通英语单词句子默写表
- 8以内加减法口算练习题
- 大连市水资源利用的现状和对策
- 雨水口间距计算
评论
0/150
提交评论