




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实验五 数据处理、多项式计算数值微积分与方程数值求解实验要求:为达到理想的实验效果,同学们务必做到:(1) 实验前认真准备,要根据实验目的和实验内容,复习好实验中可能要用到的命令,想好编程的思路,做到胸有成竹,提高上机效率。(2) 实验过程中积极思考,要深入分析命令、程序的执行结果以及各种屏幕信息的含义、出现的原因并提出解决办法。(3) 实验后认真总结,要总结本次实验有哪些收获,还存在哪些问题,并写出实验报告。实验报告应包括实验目的、实验内容、流程图(较大程序)、程序(命令)清单、运行结果以及实验的收获与体会等内容。同学们在上机过程中会碰到各种各样的问题,分析问题和解决问题的过程就是积累经验的
2、过程。只要同学们按照上面3点要求去做,在学完本课程后就一定会有很大的收获。一、实验目的1. 掌握数据统计和分析的方法。2. 掌握数值插值与曲线拟合的方法及其应用。3. 掌握多项式的常用运算。二、实验内容1. 利用MATLAB提供的rand函数生成30000个符合均匀分布的随机数,然后检验随机数的性质:(1) 均值和标准方差。(2) 最大元素和最小元素。(3) 大于0.5的随机数个数占总数的百分比。2. 将100个学生5门功课的成绩存入矩阵P中,进行如下处理:(1) 分别求每门课的最高分、最低分及相应学生序号。(2) 分别求每门课的平均分和标准方差。(3) 5门课总分的最高分、最低分及相应学生序
3、号。(4) 将5门课总分按从大到小顺序存入zcj中,相应学生序号存入xsxh。提示:上机调试时,为避免输入学生成绩的麻烦,可用取值范围在45,95之间的随机矩阵来表示学生成绩。3. 某气象观测得某日6:0018:00之间每隔2h的室内外温度(0C)如实验表1所示。实验表1 室内外温度观测结果(0C)时间h 6 8 10 12 14 16 18室内温度t1 18.0 20.0 22.0 25.0 30.0 28.0 24.0室外温度t2 15.0 19.0 24.0 28.0 34.0 32.0 30.0试用三次样条插值分别求出该日室内外6:3018:30之间每隔2h各点的近似温度(0C)。4.
4、 已知lgx在1,101区间10个整数采样点的函数值如实验表2所示。实验表2 lgx在10个采样点的函数值x 1 11 21 31 41 51 61 71 81 91 101lgx 0 1.0414 1.3222 1.4914 1.6128 1.7076 1.7853 1.8513 1.9085 1.9510 2.0043试求lgx的5次拟合多项式p(x),并绘制出lgx和p(x)在1,101区间的函数曲线。5. 有3个多项式P1(x)=x4+2x3+4x2+5,P2(x)=x+2,P3(x)=x2+2x+3,试进行下列操作:(1) 求P(x)=P1(x)+P2(x)P3(x)。(2) 求P(
5、x)的根。(3) 当x取矩阵A的每一元素时,求P(x)的值。其中 :(4) 当以矩阵A为自变量时,求P(x)的值。其中A的值与第(3)题相同。 1. 利用MATLAB提供的rand函数生成30000个符合均匀分布的随机数,然后检验随机数的性质:(1) 均值和标准方差。(2) 最大元素和最小元素。(3) 大于0.5的随机数个数占总数的百分比。解:M文件:clc;x=rand(1,30000);mu=mean(x) %求这30000个均匀分布随机数的平均值sig=std(x) %求其标准差1y=length(find(x0.5); %找出大于0.5数的个数p=y/30000 %大于0.5的所占百分
6、比运行结果:mu = 0.499488553231043sig = 0.288599933559786p = 0.4994000000000002. 将100个学生5门功课的成绩存入矩阵P中,进行如下处理:(1) 分别求每门课的最高分、最低分及相应学生序号。(2) 分别求每门课的平均分和标准方差。(3) 5门课总分的最高分、最低分及相应学生序号。(4) 将5门课总分按从大到小顺序存入zcj中,相应学生序号存入xsxh。提示:上机调试时,为避免输入学生成绩的麻烦,可用取值范围在45,95之间的随机矩阵来表示学生成绩。解:M文件:clc;t=45+50*rand(100,5);P=fix(t);
7、%生成100个学生5门功课成绩x,l=max(P) %x为每门课最高分行向量,l为相应学生序号y,k=min(P)%y为每门课最低分行向列,k为相应学生序号mu=mean(P) %每门课的平均值行向量sig=std(P) %每门课的标准差行向量s=sum(P,2) %5门课总分的列向量X,m=max(s)%5门课总分的最高分X与相应学生序号mY,n=min(s)%5门课总分的最低分Y与相应学生序号nzcj,xsxh=sort(s) %zcj为5门课总分从大到小排序,相应学生序号xsxh 运行结果:3. 某气象观测得某日6:0018:00之间每隔2h的室内外温度(0C)如实验表1所示。实验表1
8、室内外温度观测结果(0C)时间h 6 8 10 12 14 16 18室内温度t1 18.0 20.0 22.0 25.0 30.0 28.0 24.0室外温度t2 15.0 19.0 24.0 28.0 34.0 32.0 30.0试用三次样条插值分别求出该日室内外6:3018:30之间每隔2h各点的近似温度(0C)。解:M文件:clc;h=6:2:18;t1=18.0 20.0 22.0 25.0 30.0 28.0 24.0;t2=15.0 19.0 24.0 28.0 34.0 32.0 30.0;T1=interp1(h,t1,spline)%室内的3次样条插值温度T2=interp
9、1(h,t2,spline)%室外的3次样条插值温度 运行结果:T1 = Columns 1 through 3 40.000000000000703 44.000000000001130 48.000000000001705 Columns 4 through 6 54.000000000002885 64.000000000005883 60.000000000004512 Column 7 52.000000000002444T2 = Columns 1 through 3 34.000000000000284 42.000000000000902 52.000000000002444
10、Columns 4 through 6 60.000000000004512 72.000000000009408 68.000000000007503 Column 7 64.000000000005883 4. 已知lgx在1,101区间10个整数采样点的函数值如实验表2所示。实验表2 lgx在10个采样点的函数值x 1 11 21 31 41 51 61 71 81 91 101lgx 0 1.0414 1.3222 1.4914 1.6128 1.7076 1.7853 1.8513 1.9085 1.9510 2.0043试求lgx的5次拟合多项式p(x),并绘制出lgx和p(x)在
11、1,101区间的函数曲线。解:M文件:x=1:10:101;y=lg10(x);P=polyfit(x,y,5)y1=polyval(P,x);plot(x,y,:o,x,y1,-*) 运行结果:Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT. In polyfit at 80P = 0.0000 -0
12、.0000 0.0001 -0.0058 0.1537 -0.1326(这里出现警告是提示不必用5价函数就已经可以完美拟合了,是可以降价拟合。)在1,101的区间函数图像5. 有3个多项式P1(x)=x4+2x3+4x2+5,P2(x)=x+2,P3(x)=x2+2x+3,试进行下列操作:(1) 求P(x)=P1(x)+P2(x)P3(x)。(2) 求P(x)的根。(3) 当x取矩阵A的每一元素时,求P(x)的值。其中 :(4) 当以矩阵A为自变量时,求P(x)的值。其中A的值与第(3)题相同。 解:M文件:clc;clear;p1=1,2,4,0,5;p2=1,2;p3=1,2,3;p2=0,0,0,p2;p3=0,0,p3;p4=conv(p2,p3); %p4是p2与p3的乘积后的多项式 np4=length(p4); np1=length(p1);p=zeros(1,np4-np1) p1+p4 %求p(x)=p1(x)+p2(x)x=roots(p) %求p(x)的根A=-1 1.2 -1.4;0.75 2 3.5;0 5 2.5;y=polyval(p,A) %x取矩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年微晶纤维素项目发展计划
- 202BC园林绿化苗木采购合同
- 促进儿童心理健康的班级策略计划
- 年轻市场品牌塑造的秘诀计划
- 2025-2030中国防水透气膜行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国门系统行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国错误控制服务行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国锂电池电极镀膜机行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国铝挤制品行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国铅锌矿行业发展分析及前景趋势与投资风险研究报告
- 提高施工现场从业人员隐患上报(举报)率 -4:3
- 戏剧常识知识考试试题题库及答案
- 断绝父子关系协议书
- 小牛在线2018第四季度营销方案20181106
- 职业院校“金课”建设方案
- 医疗护理员基础理论知识考试试题题库及答案
- JT-T-1051-2016城市轨道交通运营突发事件应急预案编制规范
- 山东省济南市槐荫中区2023-2024学年八年级下学期期中考试物理试卷
- 艺术中国智慧树知到期末考试答案2024年
- 30道计量员岗位常见面试问题含HR问题考察点及参考回答
- (正式版)YST 1694-2024 铅冶炼企业节能诊断技术规范
评论
0/150
提交评论