




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市江津、巴县、长寿等七校联盟2025年高三1月份统一考试(数学试题文)试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.由曲线y=x2与曲线y2=x所围成的平面图形的面积为()A.1 B. C. D.2.正项等比数列中,,且与的等差中项为4,则的公比是()A.1 B.2 C. D.3.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为()A. B.C. D.4.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①以为直径的圆与抛物线准线相离;②直线与直线的斜率乘积为;③设过点,,的圆的圆心坐标为,半径为,则.其中,所有正确判断的序号是()A.①② B.①③ C.②③ D.①②③5.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是()A. B. C. D.6.数列满足:,则数列前项的和为A. B. C. D.7.若的展开式中的系数为150,则()A.20 B.15 C.10 D.258.设,,,则()A. B. C. D.9.用一个平面去截正方体,则截面不可能是()A.正三角形 B.正方形 C.正五边形 D.正六边形10.已知复数,,则()A. B. C. D.11.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是()A. B. C. D.12.函数的一个单调递增区间是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知全集为R,集合,则___________.14.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.15.设,则______.16.如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x轴上,且=,那么椭圆的方程是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)ax﹣lnx(a∈R).(1)若a=2时,求函数f(x)的单调区间;(2)设g(x)=f(x)1,若函数g(x)在上有两个零点,求实数a的取值范围.18.(12分)已知集合,集合,.(1)求集合B;(2)记,且集合M中有且仅有一个整数,求实数k的取值范围.19.(12分)第十四届全国冬季运动会召开期间,某校举行了“冰上运动知识竞赛”,为了解本次竞赛成绩情况,从中随机抽取部分学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:(1)求、、的值及随机抽取一考生其成绩不低于70分的概率;(2)若从成绩较好的3、4、5组中按分层抽样的方法抽取5人参加“普及冰雪知识”志愿活动,并指定2名负责人,求从第4组抽取的学生中至少有一名是负责人的概率.组号分组频数频率第1组150.15第2组350.35第3组b0.20第4组20第5组100.1合计1.0020.(12分)已知椭圆的离心率为是椭圆的一个焦点,点,直线的斜率为1.(1)求椭圆的方程;(1)若过点的直线与椭圆交于两点,线段的中点为,是否存在直线使得?若存在,求出的方程;若不存在,请说明理由.21.(12分)第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:组别频数5304050452010(1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设,分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求,的值(,的值四舍五入取整数),并计算;(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.(参考数据:;;.)22.(10分)近年来,随着“雾霾”天出现的越来越频繁,很多人为了自己的健康,外出时选择戴口罩,在一项对人们雾霾天外出时是否戴口罩的调查中,共调查了人,其中女性人,男性人,并根据统计数据画出等高条形图如图所示:(1)利用图形判断性别与雾霾天外出戴口罩是否有关系并说明理由;(2)根据统计数据建立一个列联表;(3)能否在犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩的关系.附:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可.【详解】联立方程:可得:,,结合定积分的几何意义可知曲线y=x2与曲线y2=x所围成的平面图形的面积为:.本题选择B选项.本题主要考查定积分的概念与计算,属于中等题.2.D【解析】
设等比数列的公比为q,,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q.【详解】由题意,正项等比数列中,,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D.本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题.3.A【解析】
由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.【详解】椭圆的离心率:,(c为半焦距;a为长半轴),设卫星近地点,远地点离地面距离分别为r,n,如图:则所以,,故选:A本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题.4.D【解析】
对于①,利用抛物线的定义,利用可判断;对于②,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于③,将代入抛物线的方程可得,,从而,,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以①正确.由题意可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所以.则直线与直线的斜率乘积为.所以②正确.将代入抛物线的方程可得,,从而,.根据抛物线的对称性可知,,两点关于轴对称,所以过点,,的圆的圆心在轴上.由上,有,,则.所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以.于是,,代入,,得,所以.所以③正确.故选:D本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.5.C【解析】
设出两人到达小王的时间,根据题意列出不等式组,利用几何概型计算公式进行求解即可.【详解】设小王和外卖小哥到达小王所居住的楼下的时间分别为,以12:00点为开始算起,则有,在平面直角坐标系内,如图所示:图中阴影部分表示该不等式组的所表示的平面区域,所以小王在楼下等候外卖小哥的时间不超过5分钟的概率为:.故选:C本题考查了几何概型中的面积型公式,考查了不等式组表示的平面区域,考查了数学运算能力.6.A【解析】分析:通过对an﹣an+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可.详解:∵,∴,又∵=5,∴,即,∴,∴数列前项的和为,故选A.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.7.C【解析】
通过二项式展开式的通项分析得到,即得解.【详解】由已知得,故当时,,于是有,则.故选:C本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.8.A【解析】
先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,,,因此,故选:A.本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.9.C【解析】试题分析:画出截面图形如图显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C.考点:平面的基本性质及推论.10.B【解析】分析:利用的恒等式,将分子、分母同时乘以,化简整理得详解:,故选B点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数的分类、复数的几何意义、复数的模、共轭复数以及复数的乘除运算,在运算时注意符号的正、负问题.11.A【解析】
由题意得,即可得点M的轨迹为以A,B为左、右焦点,的双曲线,根据双曲线的性质即可得解.【详解】如图,连接OP,AM,由题意得,点M的轨迹为以A,B为左、右焦点,的双曲线,.故选:A.本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题.12.D【解析】
利用同角三角函数的基本关系式、二倍角公式和辅助角公式化简表达式,再根据三角函数单调区间的求法,求得的单调区间,由此确定正确选项.【详解】因为,由单调递增,则(),解得(),当时,D选项正确.C选项是递减区间,A,B选项中有部分增区间部分减区间.故选:D本小题考查三角函数的恒等变换,三角函数的图象与性质等基础知识;考查运算求解能力,推理论证能力,数形结合思想,应用意识.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
先化简集合A,再求A∪B得解.【详解】由题得A={0,1},所以A∪B={-1,0,1}.故答案为{-1,0,1}本题主要考查集合的化简和并集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.【解析】
由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【详解】由题可知,,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.15.121【解析】
在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得所求.【详解】令,得,令,得,两式相加,得,所以.故答案为:.本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,难度较易.16.【解析】
由题意可设椭圆方程为:∵短轴的一个端点与两焦点组成一正三角形,焦点在轴上∴又,∴,∴椭圆的方程为,故答案为.考点:椭圆的标准方程,解三角形以及解方程组的相关知识.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)单调递减区间为(0,1),单调递增区间为(1,+∞)(2)(3,2e]【解析】
(1)当a=2时,求出,求解,即可得出结论;(2)函数在上有两个零点等价于a=2x在上有两解,构造函数,,利用导数,可分析求得实数a的取值范围.【详解】(1)当a=2时,定义域为,则,令,解得x1,或x1(舍去),所以当时,单调递减;当时,单调递增;故函数的单调递减区间为,单调递增区间为,(2)设,函数g(x)在上有两个零点等价于在上有两解令,,则,令,,显然,在区间上单调递增,又,所以当时,有,即,当时,有,即,所以在区间上单调递减,在区间上单调递增,时,取得极小值,也是最小值,即,由方程在上有两解及,可得实数a的取值范围是.本题考查了利用导数研究函数的单调性极值与最值、等价转化思想以及数形结合思想,考查逻辑推理、数学计算能力,属于中档题.18.(1)(2)【解析】
(1)由不等式可得,讨论与的关系,即可得到结果;(2)先解得不等式,由集合M中有且仅有一个整数,当时,则M中仅有的整数为;当时,则M中仅有的整数为,进而求解即可.【详解】解:(1)因为,所以,当,即时,;当,即时,;当,即时,.(2)由得,当,即时,M中仅有的整数为,所以,即;当,即时,M中仅有的整数为,所以,即;综上,满足题意的k的范围为本题考查解一元二次不等式,考查由交集的结果求参数范围,考查分类讨论思想与运算能力.19.(1),,,;(2)【解析】
(1)根据第1组的频数和频率求出,根据频数、频率、的关系分别求出,进而求出不低于70分的概率;(2)由(1)得,根据分层抽样原则,分别从抽出2人,2人,1人,并按照所在组对抽出的5人编号,列出所有2名负责人的抽取方法,得出第4组抽取的学生中至少有一名是负责人的抽法数,由古典概型概率公式,即可求解.【详解】(1),,,由频率分布表可得成绩不低于70分的概率约为:(2)因为第3、4、5组共有50名学生,所以利用分层抽样在50名学生中抽取5名学生,每组分别为:第3组:人,第4组:人,第5组:人,所以第3、4、5组分别抽取2人,2人,1人设第3组的3位同学为、,第4组的2位同学为、,第5组的1位同学为,则从五位同学中抽两位同学有10种可能抽法如下:,,,,,,,,,,其中第4组的2位同学、至少有一位同学是负责人有7种抽法,故所求的概率为.本题考查补全频率分布表、古典概型的概率,属于基础题.20.(1)(1)不存在,理由见解析【解析】
(1)利用离心率和过点,列出等式,即得解(1)设的方程为,与椭圆联立,利用韦达定理表示中点N的坐标,用点坐标表示,利用韦达关系代入,得到关于k的等式,即可得解.【详解】(1)由题意,可得解得则,故椭圆的方程为.(1)当直线的斜率不存在时,,不符合题意.当的斜率存在时,设的方程为,联立得,设,则,,,即.设,则,,,则,即,整理得,此方程无解,故的方程不存在.综上所述,不存在直线使得.本题考查了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政管理师考试的案例分析技巧与试题及答案
- 项目执行中的监控与反馈考题及答案
- 工业旅游崛起与市场潜力探索
- 防洪治理工程项目设计方案优化
- 电力设备行业未来发展趋势与市场机遇分析
- 特许金融分析师考试心理素质提升方案试题及答案
- 微生物疫苗的研发与应用试题及答案
- 项目管理活动定义试题及答案
- 解读2025年证券从业措施对考试的影响试题及答案
- 专注基础知识的证券从业资格证考试试题及答案
- GB/T 34855-2017洗手液
- GB/T 26358-2010旅游度假区等级划分
- 《轮轴的秘密》教学课件
- GB/T 1094.11-2022电力变压器第11部分:干式变压器
- GB 15892-2009生活饮用水用聚氯化铝
- 紧张的考试作文5篇范文
- 拜占庭的建筑课件
- 临床试验相关词汇中英对照
- 降低留置针非计划性拔管发生率课件
- 测井沉积相沉积特征分析课件
- 24双汇系统操作手册
评论
0/150
提交评论