2025版高考数学大一轮复习第八章立体几何初步第3讲空间点直线平面之间的位置关系分层演练文_第1页
2025版高考数学大一轮复习第八章立体几何初步第3讲空间点直线平面之间的位置关系分层演练文_第2页
2025版高考数学大一轮复习第八章立体几何初步第3讲空间点直线平面之间的位置关系分层演练文_第3页
2025版高考数学大一轮复习第八章立体几何初步第3讲空间点直线平面之间的位置关系分层演练文_第4页
2025版高考数学大一轮复习第八章立体几何初步第3讲空间点直线平面之间的位置关系分层演练文_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE1第3讲空间点、直线、平面之间的位置关系1.四条线段顺次首尾相连,它们最多可确定的平面个数有()A.4个 B.3个C.2个 D.1个解析:选A.首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC和BD不相交,则甲是乙成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A.若A,B,C,D四点不共面,则直线AC和BD不共面,所以AC和BD不相交;若直线AC和BD不相交,若直线AC和BD平行时,A,B,C,D四点共面,所以甲是乙成立的充分不必要条件.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A.若直线a,b相交,设交点为P,则P∈a,P∈b.又a⊂α,b⊂β,所以P∈α,P∈β,故α,β相交.反之,若α,β相交,则a,b可能相交,也可能异面或平行.故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.4.(2024·高考全国卷Ⅱ)在正方体ABCD­A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.eq\f(\r(2),2) B.eq\f(\r(3),2)C.eq\f(\r(5),2) D.eq\f(\r(7),2)解析:选C.如图,连接BE,因为AB∥CD,所以异面直线AE与CD所成的角等于相交直线AE与AB所成的角,即∠EAB.不妨设正方体的棱长为2,则CE=1,BC=2,由勾股定理得BE=eq\r(5).又由AB⊥平面BCC1B1可得AB⊥BE,所以tan∠EAB=eq\f(BE,AB)=eq\f(\r(5),2).故选C.5.下列命题中,真命题的个数为()①假如两个平面有三个不在一条直线上的公共点,那么这两个平面重合;②两条直线可以确定一个平面;③空间中,相交于同一点的三条直线在同一平面内;④若M∈α,M∈β,α∩β=l,则M∈l.A.1 B.2C.3 D.4解析:选B.依据公理2,可推断①是真命题;两条异面直线不能确定一个平面,故②是假命题;在空间,相交于同一点的三条直线不肯定共面(如墙角),故③是假命题;依据平面的性质可知④是真命题.综上,真命题的个数为2.6.设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b肯定是异面直线.上述命题中正确的命题是________(写出全部正确命题的序号).解析:由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.答案:①7.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.解析:取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是正方形,所以C1D=eq\r(2)AD,所以直线AC1与AD所成角的正切值为eq\r(2),所以异面直线AC1与BC所成角的正切值为eq\r(2).答案:eq\r(2)8.如图,平行六面体ABCD­A1B1C1D1中既与AB共面又与CC1共面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:59.如图,在正方体ABCD­A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1、H、O三点共线.证明:如图,连接BD,B1D1,则BD∩AC=O,因为BB1eq\o(\s\do3(═),\s\up3(∥))DD1,所以四边形BB1D1D为平行四边形,又H∈B1D,B1D⊂平面BB1D1D,则H∈平面BB1D1D,因为平面ACD1∩平面BB1D1D=OD1,所以H∈OD1.即D1、H、O三点共线.10.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.解:(1)证明:假设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A,B,C,D在同一平面内,这与A是△BCD所在平面外的一点相冲突.故直线EF与BD是异面直线.(2)取CD的中点G,连接EG,FG,则AC∥FG,EG∥BD,所以相交直线EF与EG所成的角,即为异面直线EF与BD所成的角.又因为AC⊥BD,则FG⊥EG.在Rt△EGF中,由EG=FG=eq\f(1,2)AC,求得∠FEG=45°,即异面直线EF与BD所成的角为45°.1.已知l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面解析:选B.在空间中,垂直于同始终线的两条直线不肯定平行,故A错;两条平行直线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B正确;相互平行的三条直线不肯定共面,如三棱柱的三条侧棱,故C错;共点的三条直线不肯定共面,如三棱锥的三条侧棱,故D错.2.若空间中四条两两不同的直线l1,l2,l3,l4满意l1⊥l2,l2⊥l3,l3⊥l4,则下列结论肯定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定解析:选D.如图,在长方体ABCD­A1B1C1D1中,记l1=DD1,l2=DC,l3=DA,若l4=AA1,满意l1⊥l2,l2⊥l3,l3⊥l4,此时l1∥l4,可以解除选项A和C.若l4=DC1,也满意条件,可以解除选项B.故选D.3.在三棱柱ABC­A1B1C1中,E、F分别为棱AA1、CC1的中点,则在空间中与直线A1B1、EF、BC都相交的直线()A.不存在 B.有且只有两条C.有且只有三条 D.有多数条解析:选D.在EF上随意取一点M,直线A1B1与M确定一个平面,这个平面与BC有且仅有1个交点N,当M的位置不同时确定不同的平面,从而与BC有不同的交点N,而直线MN与A1B1、EF、BC分别有交点P、M、N,如图,故有多数条直线与直线A1B1、EF、BC都相交.4.如图所示,在空间四边形ABCD中,点E、H分别是边AB、AD的中点,点F、G分别是边BC、CD上的点,且eq\f(CF,CB)=eq\f(CG,CD)=eq\f(2,3),则下列说法正确的是________.①EF与GH平行;②EF与GH异面;③EF与GH的交点M可能在直线AC上,也可能不在直线AC上;④EF与GH的交点M肯定在直线AC上.解析:连接EH,FG(图略),依题意,可得EH∥BD,FG∥BD,故EH∥FG,所以E、F、G、H共面.因为EH=eq\f(1,2)BD,FG=eq\f(2,3)BD,故EH≠FG,所以EFGH是梯形,EF与GH必相交,设交点为M.因为点M在EF上,故点M在平面ACB上.同理,点M在平面ACD上,所以点M是平面ACB与平面ACD的交点,又AC是这两个平面的交线,所以点M肯定在直线AC上.答案:④5.如图,平面ABEF⊥平面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BCeq\o(\s\do3(═),\s\up3(∥))eq\f(1,2)AD,BEeq\o(\s\do3(═),\s\up3(∥))eq\f(1,2)FA,G,H分别为FA,FD的中点.(1)求证:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?解:(1)证明:由题设知,FG=GA,FH=HD,所以GHeq\o(\s\do3(═),\s\up3(∥))eq\f(1,2)AD.又BCeq\o(\s\do3(═),\s\up3(∥))eq\f(1,2)AD,故GHeq\o(\s\do3(═),\s\up3(∥))BC.所以四边形BCHG是平行四边形.(2)C,D,F,E四点共面.理由如下:由BEeq\o(\s\do3(═),\s\up3(∥))eq\f(1,2)FA,G是FA的中点知,BEeq\o(\s\do3(═),\s\up3(∥))GF,所以EFeq\o(\s\do3(═),\s\up3(∥))BG.由(1)知BG∥CH,所以EF∥CH,故EC、FH共面.又点D在直线FH上,所以C,D,F,E四点共面.6.如图,在三棱锥P­ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=eq\f(π,2),AB=2,AC=2eq\r(3),PA=2.求:(1)三棱锥P­ABC的体积;(2)异面直线BC与AD所成角的余弦值.解:(1)S△ABC=eq\f(1,2)×2×2eq\r(3)=2eq\r(3),三棱锥P­ABC的体积为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论