




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
...wd......wd......wd...分式方程应用题总汇及答案A、B两地的距离是80公里.一辆公共汽车从A地驶出3小时后.一辆小汽车也从A地出发.它的速度是公共汽车的3倍.小汽车比公共汽车迟20分钟到达B地.求两车的速度。【提示】设共交车速度为x.小汽车速度为3x.列方程得:80/(3x)+3=80/x+20/60为加快西部大开发.某自治区决定新修一条公路.甲、乙两工程队承包此项工程。如果甲工程队单独施工.则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成.现在甲、乙两队先共同施工4个月.剩下的由乙队单独施工.则刚好如期完成。问原来规定修好这条公路需多长时间【提示】设时间为x个月.列方程得:[1/x+1/(x+6)]*4+(x-4)/(x+6)=1某工人原方案在规定时间内恰好加工1500个零件.改进了工具和操作方法后.工作效率提高为原来的2倍.因此加工1500个零件时.比原方案提前了五小时.问原方案每小时加工多少个零件【提示】设原方案每小时加工x个零件.列方程得:1500/2x+5=1500/x甲、乙两组学生去距学校4.5千米的敬老院清扫卫生.甲组学生步行出发半小时后.乙组学生骑自行车开场出发.结果两组学生同时到达敬老院.如果步行的速度是骑自行车的速度的1/3.求步行和骑自行车的速度各是多少【提示】设步行的速度是每小时x千米.则4.5/3x+0.5=4.5/x5、某质检部门抽取甲、乙两个一样数量的产品进展质量检测.结果甲厂有48件合格产品.乙厂有45件合格产品.甲厂合格率比乙厂高5%.求抽取检验的产品数量及甲厂的合格率。【提示】设抽取检验的产品数量为x.则(48/x-45/x)*100%=5%6、某车间加工1200个零件后.采用了新工艺.工效提高50%.这样加工同样多的零件就少用10小时.采用新工艺前后每小时分别加工多少个零件7、A、B两地相距48千米.一艘轮船从A地顺流航行至B地.又立即从B地逆流返回A地.共用去9小时.水流速度为4千米/时.假设设该轮船在静水中的速度为x千米/时.则可列方程求解。【提示】48/(x+4)+48/(x-4)=9一个分数的分子比分母小6,如果分子分母都加1,则这个分数等于,求这个分数.【提示】设分子为x,则(x+1)/(x+6+1)=1/49、甲、乙两地相距135千米.大小两辆汽车从甲地开往乙地.大汽车比小汽车早出发5小时.小汽车比大汽辆早到30分钟.小汽车和大汽车的速度之比为5∶2.求两车的速度.【答案】设小汽车的速度为5x千米/时.大汽车的速度为2x千米/时.根据题意.得:.解得x=9.小汽车的速度为45千米/时.大汽车的速度为18千米/时.一项工作A独做40天完成.B独做50天完成.先由A独做.再由B独做.共用46天完成.问A、B各做了几天【答案】设甲做了x天.则乙做了〔46-x〕天.据题意.得:.解得x=16.甲做16天.乙做30天.甲、乙两人各走14千米.甲比乙早半小时走完全程.甲与乙速度的比为8∶7.求两人的速度各是多少【提示】设甲的速度为8xkm/h,乙的速度为7xkm/h,则14/8x+0.5=14/7x12、一个批发兼零售的文具店规定:凡一次购置铅笔301支以上〔包括301支〕可以按批发价付款;购置300支以下〔包括300支〕只能按零售价付款.现有学生小王购置铅笔.如果给初三年级学生每人买1支.则只能按零售价付款.需用元.〔为正整数.且>100〕如果多买60支.则可按批发价付款.同样需用元.设初三年级共有名学生.则①的取值范围是;②铅笔的零售价每支应为元;③批发价每支应为元.〔用含、的代数式表示〕.【答案】.①241≤≤300;②.从甲地到乙地有两条公路.一条是全长600km的普通公路.另一条是全长480km的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上快45/.由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.求该客车由高速公路从甲地到乙地所需的时间.【答案】8小时14、问题探索:〔1〕一个正分数〔>>0〕.如果分子、分母同时增加1.分数的值是增大还是减小请证明你的结论.〔2〕假设正分数〔>>0〕中分子和分母同时增加2.3…〔整数>0〕.情况假设何〔3〕请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积.但按采光标准.窗户面积与地板面积的比应不小于10%.并且这个比值越大.住宅的采光条件越好.问同时增加相等的窗户面积和地板面积.住宅的采光条件是变好还是变坏请说明理由.【答案】〔1〕增大;〔2〕增大;〔3〕采光条件变好了用价值为100元的甲种涂料与价值为200元的乙种涂料配制成一种新涂料.其每千克的售价比甲种涂料每千克的售价少3元.比乙种涂料每千克的售价多1元.求这种新涂料每千克售价是多少元【提示】设这种新涂料每千克售价是x元,则300/x=100/(3+x)+200/(x-1)今年入春以来.湖南省大局部地区发生了罕见的旱灾.连续几个月无有效降水。为抗旱救灾.驻湘某部方案为驻地村民新建水渠3600米.为使水渠能尽快投入使用.实际工作效率是原方案工作效率的1.8倍.结果提前20天完成修水渠任务。问原方案每天修水渠多少米【答案】解:设原方案每天修水渠米.则实际每天修水渠1.8米.则依题意有.解得=80。经检验.=80是方程的根。答:原方案每天修水渠80米。某工程.甲工程队单独做40天完成.假设乙工程队单独做30天后.甲、乙两工程队再合作20天完成.〔1〕求乙工程队单独做需要多少天完成〔2〕将工程分两局部.甲做其中一局部用了x天.乙做另一局部用了y天.其中x、y均为正整数.且x<15.y<70.求x、y.【提示】(1)设乙工程队单独做需要x天完成.则(1/40+1/x)*20+30/x=1.得x=100〔2〕依据题意得:x/40+y/100=1并结合“x、y均为正整数.且x<15.y<70〞建设不等式组试求x,y的值.其中x有14可取.得相应y值65。18、阅读下面对话:小红妈:“售货员.请帮我买些梨。〞售货员:“小红妈.您上次买的那种梨都卖完了.我们还没来得及进货.我建议这次您买些新进的苹果.价格比梨贵一点.不过苹果的营养价值更高。〞小红妈:“好.你们很讲信用.这次我照上次一样.也花30元人民币。〞对照前后两次的电脑小票.小红妈发现:每千克苹果的价是梨的1.5倍.苹果的重量比梨轻2.5千克。试根据上面对话和小红妈的发现.分别求出梨和苹果的单价。【答案】梨的单价是4元/千克.苹果的单价是6元/千克某自来水公司水费计算方法如下:假设每户每月用水不超过5m3.则每立方米收费1.5元;假设每户每月用水超过5m3.则超过局部每立方米收取较高的定额费用.2月份.小王家用水量是小李家用水量的.小王家当月水费是17.5元.小李家当月水费是27.5元.求超过5m3的局部每立方米收费多少元【答案】解:设超过5m3的局部每立方米收费x元.根据题意.得5+=×〔5+〕.解之.得x=2.经检验.x=2是原方程的解.且符合题意.所以超过5m3的局部每立方米收费2元.20、某班13名同学参加每周一次的卫生大扫除.按学校的卫生要求需要完成总面积为80m2的三个工程的任务.三个工程的面积比例和每人每分钟完成各工程的工作量如以以以下图所示.〔1〕从上述统计图可知:每人每分钟能擦课桌椅_______m2;擦玻璃、擦课桌椅及扫地、拖地的面积分别是______m2._______m2.________m2;〔2〕如果x人每分钟擦玻璃的面积是ym2.则y与x之间的函数关系式是______.〔3〕他们一起完成扫地和拖地的任务后.把这13人分成两组.一组去擦玻璃.一组去擦课桌椅.如果你是卫生委员.该假设何分配这两组的人数.才能同时完成任务【答案】解:〔1〕;16.20.44;〔2〕y=x;〔3〕设派x人去擦玻璃.则派〔13-x〕人去擦课桌椅.根据题意.得EMBEDEquation.DSMT4错误!不能通过编辑域代码创立对象。.解得x=8.经检验.x=8是原方程的解.且符合题意.∴13-x=5.所以派8人去擦玻璃.5人去擦桌椅.才能同时完成任务.某商人用7200元购进甲、乙两种商品.然后卖出.假设每种商品均用去一半的人民币.则一共可购进750件;假设用的人民币买甲种商品.其余的人民币买乙种商品.则要少购进50件.卖出时.甲种商品可盈利20%.乙种商品可盈利25%.〔1〕求甲、乙两种商品的购进价和卖出价;〔2〕因市场需求总量有限.每种商品最多只能卖出600件.那么该商人应采取假设何的购货方式才能获得最大利润最大利润是多少【答案】解:〔1〕甲、乙两种商品的进价分别为12元.8元.卖出价分别为14.4元、10元.提示:设第一次甲购x件.则乙购〔750-x〕件.依据题意.得7200×÷+7200×÷=750-50〔2〕甲购200件.乙购600件.可获得最大利润.最大利润为1680元.22、某商店有一架左、右臂长不相等的天平.当顾客欲购质量为2mkg的货物时.营业员现在左盘上放上mkg的砝码.右盘放货物.待天平平衡后.把货物倒给顾客.然后改为右盘放砝码mkg.左盘放货物.待天平平衡后.把货物倒给顾客.认为这样顾客两次得到的货物就是2mkg.这种交易公平吗试用学过的数学知识加以解释。【答案】:m1+m2>2m这种交易不公平如以以以下图的电路中.已测定CAD支路的电阻是R1欧姆.又知CBD支路的电阻R2比R1大50欧姆.根据电学有关定律可知总电阻R与R1.R2满足关系式EQ\f(1,R)=EQ\f(1,R1)+EQ\f(1,R2).试用含R1的式子表示总电阻R。【答案】:EQ\f(R1\s(2)+50R1,2R1+50)纳米是个非常小的长度单位.1纳米=10EQ\s(-9)米.把1纳米的物资放到乒乓球上.就如同把乒乓球放在地球上.那么1立方毫米的空间可以放多少个1立方纳米的物体〔物体之间的间隙忽略不计〕【答案】:10EQ\s(18)(个)去年我市遇到百年一遇的大旱.全市人民齐心协力积极抗旱。某校师生也活动起来为打井抗旱捐款.第一天捐款4800元.第二天捐款6000元.第二天捐款人数比第一天捐款人数多50人.且两天人均捐款数相等.那么两天参加捐款的分别是多少人【提示】设第一天捐款人数为x人.则4800/x=6000/(x+50)小芳带了15元人民币去商店买笔记本.如果买一种软皮本.正好需付15元人民币.但售货员建议她买一种质量好的硬皮本.这种本子的价格比软皮本高出一半.因此她只能少买一本笔记本.这种软皮本和硬皮本的价格各是多少【答案】软皮本5元.硬皮本7.5元八年级〔1〕班的学生利用周末乘汽车到游览区游览.游览区距学校120千米。一局部学生乘慢车先行.出发一小时后.另一局部学生乘快车前往.结果他们同时到达游览区。快车的速度是慢车的1.5倍.求慢车的速【答案】慢车速度为40km/h·学校·王教师家·小明家28、如图.小明家、王教师家、学校在同一条路上.小明家到王教师家路程为3km.王教师家到学校的路程为0.5km,由于小明父母战斗在抗“非典〞第一线.为了使他能按时到校.·学校·王教师家·小明家【提示】设步行速度为xkm/h,(3+3+0.5)/3x-20/60=0.5/x29、A、B两地相距100公里.甲骑电瓶车由A往B出发.1小时30分钟后.乙开着小汽车也由A往B.乙的车速为甲的车速的2.5倍.且乙比甲提前1小时到达.求两人的速度各是多少【提示】设电动车速度为x公里/小时.则100/x=100/2.5x+1.5+130.某一项工程.在工程招标时.接到甲、乙两个工程队的投标书.施工一天.需付甲工程队工程款万元.乙工程队工程款万元.工程领导小组根据甲乙两队的投标书测算.可有三种施工方案:甲队单独完成这项工程刚好如期完成;乙队单独完成这项工程要比规定日期多用5天;假设甲、乙两队合作4天.余下的工程由乙队单独也正好如期完成.在不耽误工期的情况下.你觉得那一种施工方案最节省工程款?【提示】设甲队单独完成这项工程需x天.则[1/x+1/(x+5)]*4+(x-4)/(x+5)=1比邻而居的蜗牛神和蚂蚁王相约.第二天上午8时结伴出发.到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议。蜗牛神想到“笨鸟先飞〞的古训.于是给蚂蚁王留下一纸便条后提前2小时单独先行.蚂蚁王按既定时间出发.结果它们同时到达。蚂蚁王的速度是蜗牛神的4倍.求它们各自的速度。【提示】设蜗牛速度为x米/小时.则16/x=16/4x+232、为了更好适应和服务新农村下经济的快速开展.某乡镇决定对一段公路进展改造.这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天.那么剩下的工程还需要两队合做20天才能完成.〔1〕求乙工程队单独完成这项工程所需的天数;〔2〕求两队合做完成这项工程所需的天数.【答案】〔1〕60天;〔2〕24天〔此题12分〕某校统考后.需将成绩录入电脑.为防止出现过失.全校2640名学生成绩数据安排甲、乙两位教务员分别录入计算机一遍.然后经过电脑比对输入成绩数据是否一致.甲的输入速度是乙的速度的2倍.结果甲比乙少用2小时输完.求这两位教务员每分钟各能录入多少名学生的考试成绩数据【答案】甲每分钟输入22名.乙每分钟输入11名.甲、乙两种食品都含糖.它们的含糖量之比为2∶3.其他原料含量之比为1∶2.重量之比为40∶77.求甲、乙两种食品含糖量的百分比分别是多少.【答案】设甲种食品含糖量为2x克.其他原料y克;则乙种食品含糖量为3x克.其他原料2y克.据题意.得:.解得y=.则甲、乙两种食品含糖量的百分比分别为甲种:=15%;乙种:15%%.35、甲打字员打9000个字所用的时间与乙打字员打7200个字所用的时间一样.甲、乙两人每小时共打5400个字.问甲、乙两个打字员每小时各打多少个字【提示】设甲的速度为x个字/小时,则9000/x=7200/(5400-x)〔10分〕一名同学方案步行30千米参观博物馆.因情况变化改骑自行车.且骑车的速度是步行速度的1.5倍.才能按要求提前2小时到达.求这位同学骑自行车的速度。【提示】设步行速度为x千米/小时.则30/x=30/1.5x+237、如以以以下图.是某居宅的平面构造示意图.图中标明了有关尺寸〔墙体厚度忽略不计.单位:米〕。房主方案把卧室以外的地面都铺上地转.如果他选用地转的价格是a元/米2.则买砖至少需___元。假设每平方米需砖b块.则他应砖___块。〔用含a.x.y的代数式表示〕【答案】先求出地面的面积.将面积乘以价格即为金额;将面积除以每平方米的砖的块数.即为购砖的块数。11axy.11xy/b。甲、乙两小商贩每次都去同一批发商场买进白糖.甲进货的策略是:每次买1000元人民币的糖;乙进货的策略是每次买1000斤糖.最近他俩同去买进了两次价格不同的糖.问两人中谁的平均价格低一些【答案】解:设两次买糖的进价分别是x、y(单位:元/斤).A、B分别是甲、乙两人买糖的平均进价.则:乙的平均价高些.甲的方法比照合算.此法可推广到屡次进货.原理是调和平均不超过几何平均.39、今年入春以来.湖南省大局部地区发生了罕见的旱灾.连续几个月无有效降水。为抗旱救灾.驻湘某部方案为驻地村民新建水渠3600米.为使水渠能尽快投入使用.实际工作效率是原方案工作效率的1.8倍.结果提前20天完成修水渠任务。问原方案每天修水渠多少米40、某文化用品商店用2000元购进一批学生书包.上市后发现供不应求.商店又购进第二批同样的书包.所购数量是第一批购进数量的3倍.但单价贵了4元.结果第二批用了6300元.(1)求第一批购进书包的单价是多少元(2)假设商店销售这两批书包时.每个售价都是120元.全都售出后.商店共盈利多少元【答案】解:(1)设第一批购进书包的单价为x元.根据题意.得eq\f(6300,x+4)=3×eq\f(2000,x).解得x=80。经检验x=80是原方程的根。答:第一批购进书包的单价是80元。(2)第一批购进数量为eq\f(2000,80)=25.第二批购进数量为25×3=75。∴商店盈利为120×(25+75)-2000-6300=3700(元)。答:商店共盈利3700元。41、上个月某超市购进了两批一样品种的水果.第一批用了2000元.第二批用了5500元.第二批购进水果的重量是第一批的2.5倍.且进价比第一批每千克多1元.〔1〕求两批水果共购进了多少千克〔2〕在这两批水果总重量正常损耗10%.其余全部售完的情况下.如果这两批水果的售价一样.且总利润率不低于26%.那么售价至少定为每千克多少元【答案】解:〔1〕设第一批购进水果千克.则第二批购进水果2.5千克.依据题意得:-=1.解得.=200.经检验=200是原方程的解。∴+2.5=700。答:这两批水果功够进700千克。〔2〕设售价为每千克元.则≥0.26.解得.≥15。答:售价至少为每千克15元。某商店在“端午节〞到来之际.以2400元购进一批盒装粽子.节日期间每盒按进价增加20%作为售价.售出了50盒;节日过后每盒以低于进价5元作为售价.售完余下的粽子.整个买卖过程共盈利350元.求每盒粽子的进价.【答案】解:设每盒粽子的进价为x元.由题意得20%x×50〔50〕×5350化简得x210x12000解方程得x140.x230〔不合题意舍去〕经检验.x140.x230都是原方程的解.但x230不合题意.舍去.43、某书店老板去图书批发市场购置某种图书.第一次用1200元购书假设干本.并按该书定价7元出售.很快售完.由于该书畅销.第二次购书时.每本书批发价已比第一次提高了20%.他用1500元所购该书数量比第一次多10本.按定价售出200本时.出现滞销.便以定价的4折售完剩余的书.试问该老板两次售书总体上是赔人民币了.还是赚人民币了〔不考虑其它因素〕假设赔人民币.赔多少假设赚人民币.赚多少【答案】设第一次购书的进价为元.则第二次购书的进价为元.根据题意得:解得:经检验是原方程的解所以第一次购书为〔本〕.第二次购书为〔本〕第一次赚人民币为〔元〕第二次赚人民币为〔元〕所以两次共赚人民币〔元〕44、进入防汛期后.某地对河堤进展了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.你们是用9天完成4800米长的大坝加固任务的?我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.你们是用9天完成4800米长的大坝加固任务的?通过这段对话,请你求出该地驻军原来每天加固的米数.通过这段对话,请你求出该地驻军原来每天加固的米数.【答案】设原来每天加固x米.根据题意.得.去分母.得1200+4200=18x〔或18x=5400〕解得.检验:当时.〔或分母不等于0〕.∴是原方程的解.A,B两地相距80千米.一辆公共汽车从A地出发开往B地.2小时后.又从A地开来一辆小汽车.小汽车的速度是公共汽车的3倍。结果小汽车比公共汽车早到40分钟到达B地。求两种车的速度。【答案】设公共汽车的速度为x千米/小时.则小汽车的速度为3x千米/小时.由题意可列方程为解得x=20。经检验x=20适合题意.故3x=60;即公共汽车的速度为20千米/小时.小汽车的速度为60千米/小时。华联商厦进货员在苏州发现一种应急衬衫.预测能畅销.于是就用8万元购进了所有衬衫.但还急需两倍的这种衬衫.经人介绍.他又在南京用17.6万元购进所需衬衫.只
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《智能手机维修教程》课件
- 铁路桥隧无损检测任务二无损检测基本理论课件
- 铁道机车专业教学郑州铁路课件
- 铁路安全监测与预警系统讲师刘新强课件
- 铁路工程安全技术石家庄铁路21课件
- 铁路集装箱运输组织单元集装箱运输作业流程课件
- 2025年吉林医学高等专科学校单招考试题库
- 合同纠纷处理办法
- 个人终止租房合同协议书范本
- 版体育场地使用权租赁合同
- 2024年阜阳太和县第二人民医院招聘笔试真题
- 招商引资知识培训课件
- 癌症治疗协议书模板
- 2025年平顶山文化艺术职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 弘扬航天精神中国航天日主题宣教课件
- 上海市宝山区上海交大附中2024-2025学年高考生物试题模拟试卷(8)生物试题含解析
- 南京铁道职业技术学院招聘笔试真题2023
- 对口支援乡镇卫生院工作医师考核登记表
- 装配式叠合板楼板安装施工方案
- 北京市中小学生天文知识竞赛复习题库
- GJB300797静电标准doc
评论
0/150
提交评论