




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省天水市重点中学2025年第二学期高三年级阶段性试测数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,则()A. B. C.3 D.42.在长方体中,,则直线与平面所成角的余弦值为()A. B. C. D.3.下图是我国第24~30届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是().金牌(块)银牌(块)铜牌(块)奖牌总数2451112282516221254261622125027281615592832171463295121281003038272388A.中国代表团的奥运奖牌总数一直保持上升趋势B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C.第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D.统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.54.若,则,,,的大小关系为()A. B.C. D.5.设全集U=R,集合,则()A. B. C. D.6.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则A.PQ B.QPC.Q D.Q7.已知双曲线的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为()A. B. C. D.8.若,,,点C在AB上,且,设,则的值为()A. B. C. D.9.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.10.设函数定义域为全体实数,令.有以下6个论断:①是奇函数时,是奇函数;②是偶函数时,是奇函数;③是偶函数时,是偶函数;④是奇函数时,是偶函数⑤是偶函数;⑥对任意的实数,.那么正确论断的编号是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤11.函数在上的图象大致为()A. B.C. D.12.已知函数,,若成立,则的最小值为()A.0 B.4 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺,术曰:周自相乘,以高乘之,十二而一”,这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”,就是说:圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),则由此可推得圆周率的取值为________.14.在等差数列()中,若,,则的值是______.15.已知,为正实数,且,则的最小值为________________.16.若双曲线的离心率为,则双曲线的渐近线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)我们称n()元有序实数组(,,…,)为n维向量,为该向量的范数.已知n维向量,其中,,2,…,n.记范数为奇数的n维向量的个数为,这个向量的范数之和为.(1)求和的值;(2)当n为偶数时,求,(用n表示).18.(12分)求下列函数的导数:(1)(2)19.(12分)已知函数.(1)若函数,求的极值;(2)证明:.(参考数据:)20.(12分)已知函数.(1)若是函数的极值点,求的单调区间;(2)当时,证明:21.(12分)如图1,在等腰中,,,分别为,的中点,为的中点,在线段上,且。将沿折起,使点到的位置(如图2所示),且。(1)证明:平面;(2)求平面与平面所成锐二面角的余弦值22.(10分)已知函数,.(1)当时,求不等式的解集;(2)若函数的图象与轴恰好围成一个直角三角形,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
根据复数相等的特征,求出和,再利用复数的模公式,即可得出结果.【详解】因为,所以,解得则.故选:A.【点睛】本题考查相等复数的特征和复数的模,属于基础题.2.C【解析】
在长方体中,得与平面交于,过做于,可证平面,可得为所求解的角,解,即可求出结论.【详解】在长方体中,平面即为平面,过做于,平面,平面,平面,为与平面所成角,在,,直线与平面所成角的余弦值为.故选:C.【点睛】本题考查直线与平面所成的角,定义法求空间角要体现“做”“证”“算”,三步骤缺一不可,属于基础题.3.B【解析】
根据表格和折线统计图逐一判断即可.【详解】A.中国代表团的奥运奖牌总数不是一直保持上升趋势,29届最多,错误;B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;D.统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序排列的中位数为,不正确;故选:B【点睛】此题考查统计图,关键点读懂折线图,属于简单题目.4.D【解析】因为,所以,因为,,所以,.综上;故选D.5.A【解析】
求出集合M和集合N,,利用集合交集补集的定义进行计算即可.【详解】,,则,故选:A.【点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题.6.C【解析】
解:因为P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此选C7.A【解析】
在中,由余弦定理,得到,再利用即可建立的方程.【详解】由已知,,在中,由余弦定理,得,又,,所以,,故选:A.【点睛】本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立三者间的关系,本题是一道中档题.8.B【解析】
利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.9.A【解析】
由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.10.A【解析】
根据函数奇偶性的定义即可判断函数的奇偶性并证明.【详解】当是偶函数,则,所以,所以是偶函数;当是奇函数时,则,所以,所以是偶函数;当为非奇非偶函数时,例如:,则,,此时,故⑥错误;故③④正确.故选:A【点睛】本题考查了函数的奇偶性定义,掌握奇偶性定义是解题的关键,属于基础题.11.A【解析】
首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;【详解】解:依题意,,故函数为偶函数,图象关于轴对称,排除C;而,排除B;,排除D.故选:.【点睛】本题考查函数图象的识别,函数的奇偶性的应用,属于基础题.12.A【解析】
令,进而求得,再转化为函数的最值问题即可求解.【详解】∵∴(),∴,令:,,在上增,且,所以在上减,在上增,所以,所以的最小值为0.故选:A【点睛】本题主要考查了导数在研究函数最值中的应用,考查了转化的数学思想,恰当的用一个未知数来表示和是本题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.3【解析】
根据圆堡瑽(圆柱体)的体积为(底面圆的周长的平方高),可得,进而可求出的值【详解】解:设圆柱底面圆的半径为,圆柱的高为,由题意知,解得.故答案为:3.【点睛】本题主要考查了圆柱的体积公式.只要能看懂题目意思,结合方程的思想即可求出结果.14.-15【解析】
是等差数列,则有,可得的值,再由可得,计算即得.【详解】数列是等差数列,,又,,,故.故答案为:【点睛】本题考查等差数列的性质,也可以由已知条件求出和公差,再计算.15.【解析】
由,为正实数,且,可知,于是,可得,再利用基本不等式即可得出结果.【详解】解:,为正实数,且,可知,,.当且仅当时取等号.的最小值为.故答案为:.【点睛】本题考查了基本不等式的性质应用,恰当变形是解题的关键,属于中档题.16.【解析】
利用,得到的关系式,然后代入双曲线的渐近线方程即可求解.【详解】因为双曲线的离心率为,所以,即,因为双曲线的渐近线方程为,所以双曲线的渐近线方程为.故答案为:【点睛】本题考查双曲线的几何性质;考查运算求解能力;熟练掌握双曲线的几何性质是求解本题的关键;属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),.(2),【解析】
(1)利用枚举法将范数为奇数的二元有序实数对都写出来,再做和;(2)用组合数表示和,再由公式或将组合数进行化简,得出最终结果.【详解】解:(1)范数为奇数的二元有序实数对有:,,,,它们的范数依次为1,1,1,1,故,.(2)当n为偶数时,在向量的n个坐标中,要使得范数为奇数,则0的个数一定是奇数,所以可按照含0个数为:1,3,…,进行讨论:的n个坐标中含1个0,其余坐标为1或,共有个,每个的范数为;的n个坐标中含3个0,其余坐标为1或,共有个,每个的范数为;的n个坐标中含个0,其余坐标为1或,共有个,每个的范数为1;所以,.因为,①,②得,,所以.解法1:因为,所以..解法2:得,.又因为,所以.【点睛】本题考查了数列和组合,是一道较难的综合题.18.(1);(2).【解析】
(1)根据复合函数的求导法则可得结果.(2)同样根据复合函数的求导法则可得结果.【详解】(1)令,,则,而,,故.(2)令,,则,而,,故,化简得到.【点睛】本题考查复合函数的导数,此类问题一般是先把函数分解为简单函数的复合,再根据复合函数的求导法则可得所求的导数,本题属于容易题.19.(1)见解析;(1)见证明【解析】
(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(1)问题转化为证ex﹣x1﹣xlnx﹣1>0,根据xlnx≤x(x﹣1),问题转化为只需证明当x>0时,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),根据函数的单调性证明即可.【详解】(1),,当,,当,,在上递增,在上递减,在取得极大值,极大值为,无极大值.(1)要证f(x)+1<ex﹣x1.即证ex﹣x1﹣xlnx﹣1>0,先证明lnx≤x﹣1,取h(x)=lnx﹣x+1,则h′(x)=,易知h(x)在(0,1)递增,在(1,+∞)递减,故h(x)≤h(1)=0,即lnx≤x﹣1,当且仅当x=1时取“=”,故xlnx≤x(x﹣1),ex﹣x1﹣xlnx≥ex﹣1x1+x﹣1,故只需证明当x>0时,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),则k′(x)=ex﹣4x+1,令F(x)=k′(x),则F′(x)=ex﹣4,令F′(x)=0,解得:x=1ln1,∵F′(x)递增,故x∈(0,1ln1]时,F′(x)≤0,F(x)递减,即k′(x)递减,x∈(1ln1,+∞)时,F′(x)>0,F(x)递增,即k′(x)递增,且k′(1ln1)=5﹣8ln1<0,k′(0)=1>0,k′(1)=e1﹣8+1>0,由零点存在定理,可知∃x1∈(0,1ln1),∃x1∈(1ln1,1),使得k′(x1)=k′(x1)=0,故0<x<x1或x>x1时,k′(x)>0,k(x)递增,当x1<x<x1时,k′(x)<0,k(x)递减,故k(x)的最小值是k(0)=0或k(x1),由k′(x1)=0,得=4x1﹣1,k(x1)=﹣1+x1﹣1=﹣(x1﹣1)(1x1﹣1),∵x1∈(1ln1,1),∴k(x1)>0,故x>0时,k(x)>0,原不等式成立.【点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及不等式的证明,考查转化思想,属于中档题.20.(1)递减区间为(-1,0),递增区间为(2)见解析【解析】
(1)根据函数解析式,先求得导函数,由是函数的极值点可求得参数.求得函数定义域,并根据导函数的符号即可判断单调区间.(2)当时,.代入函数解析式放缩为,代入证明的不等式可化为,构造函数,并求得,由函数单调性及零点存在定理可知存在唯一的,使得成立,因而求得函数的最小值,由对数式变形化简可证明,即成立,原不等式得证.【详解】(1)函数可求得,则解得所以,定义域为,在单调递增,而,∴当时,,单调递减,当时,,单调递增,此时是函数的极小值点,的递减区间为,递增区间为(2)证明:当时,,因此要证当时,,只需证明,即令,则,在是单调递增,而,∴存在唯一的,使得,当,单调递减,当,单调递增,因此当时,函数取得最小值,,,故,从而,即,结论成立.【点睛】本题考查了由函数极值求参数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目管理绩效提升的新维度试题及答案
- 项目管理专家认证考试重要试题及答案
- 2024年福建事业单位考试全局复习策略与试题及答案
- 项目管理资格考试知识推理试题及答案
- 2025年会计政策分析试题及答案
- 精准备战特许金融分析师考试试题及答案
- 武威电梯装修施工方案
- 项目管理资格复习关键点试题及答案
- 信丰避雷塔安装施工方案
- 耐高压洁净管道施工方案
- 云肩完整版本
- 大别山游客集散中心建设工程项目可行性研究报告
- 汽车经纪人服务行业市场现状分析及未来三至五年行业预测报告
- 《Python语言程序设计》课件-第四章(中英文课件)
- 影视剧拍摄与制作合同
- 如何编制解决方案
- 使用错误评估报告(可用性工程)模版
- 代理记账有限公司简介(5个范本)
- 教科版 三年级下综合实践 3.2风的利用 教案
- 2025届高考专题复习:课内外古诗词对比阅读
- 《用户体验设计导论》第16章 视觉设计的用户体验
评论
0/150
提交评论