2024-2025学年天津市宝坻区高一下册第一次月考数学检测试题(附解析)_第1页
2024-2025学年天津市宝坻区高一下册第一次月考数学检测试题(附解析)_第2页
2024-2025学年天津市宝坻区高一下册第一次月考数学检测试题(附解析)_第3页
2024-2025学年天津市宝坻区高一下册第一次月考数学检测试题(附解析)_第4页
2024-2025学年天津市宝坻区高一下册第一次月考数学检测试题(附解析)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年天津市宝坻区高一下学期第一次月考数学检测试题一、单选题1.()A. B. C. D.0【正确答案】A【分析】根据向量的加减运算,即可得答案.【详解】由题意得,故选:A2.下列说法正确的是()A.向量的模是一个正实数B.若与不共线,则与都是非零向量C.共线的单位向量必相等D.两个相等向量的起点、方向、长度必须都相同【正确答案】B【分析】利用平面向量相关概念逐项分析判断即得.【详解】向量模是一个非负实数,如零向量的模是0,A错误;零向量与任意向量共线,若与不共线,则与都是非零向量,B正确;共线的单位向量方向可能相同,也可能相反,C错误;两个向量相等的条件是长度相等、方向相同,与起点无关,D错误.故选:B3.已知,,则点B的坐标为()A. B.C. D.【正确答案】B【分析】根据向量的坐标表示可得答案.【详解】设,则,解得.故选:B4.在复平面内,复数共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【正确答案】D【分析】先求出复数的共轭复数,然后可求出共轭复数对应的点所在的象限.【详解】因为,所以,所以在复平面对应的点位于第四象限.故选:D5.在中,点是上靠近点的四等分点,设,则()A. B.C. D.【正确答案】D【分析】运用三角形法则变形计算即可.【详解】如图所示,在中,.已知点是上靠近点的四等分点,所以.在中,,代入,可得..又因为,,所以.故选:D.6.已知向量满足,则()A. B. C.1 D.2【正确答案】C【分析】根据给定模长,利用向量的数量积运算求解即可.【详解】解:∵,又∵∴9,∴故选:C.7.在中,,点E在上,若,则()A. B. C. D.【正确答案】C【分析】利用向量的线性运算将用与表示出来,再利用向量共线定理的推理即可得解.【详解】因为,所以,则,因为三点共线,所以,解得.故选:C8.已知平面向量,且,则()A. B. C. D.3【正确答案】A【分析】利用向量的坐标运算及向量共线的坐标表示求出.【详解】向量,则,由,得,所以.故选:A9.在中,,则()A. B. C. D.【正确答案】B【分析】利用正弦定理的边角变换与余弦定理即可得解.【详解】因为,所以由正弦定理得,即,则,故,又,所以.故选:B二、填空题10.复数虚部为________.【正确答案】【分析】根据复数的除法化简复数值,然后根据定义得出复数的虚部.【详解】,即虚部为.故11.在中,若,,,则_________.【正确答案】##【分析】根据同角三角函数关系得,最后利用正弦定理即可解出.【详解】因为,为三角形内角,则,则由正弦定理得,即,解得.故答案为.12.已知向量,若,则__________.【正确答案】##【分析】利用向量线性运算的坐标表示,数量积的坐标表示列式计算得解.【详解】依题意,,则,所以.故13.已知中,角A,B,C满足:,则________.【正确答案】##【分析】根据题意可求得,再由余弦定理计算可得结果.【详解】由正弦定理可得,因此;不妨取,其中,因此.故14.向量在向量上的投影向量的坐标为________.【正确答案】【分析】根据投影向量的定义求解.【详解】向量在向量上的投影向量为.故答案为.15.已知向量,,若与所成的角为钝角,则实数的取值范围:______.【正确答案】【分析】与所成的角为钝角即且与不平行,列式求解即可.【详解】与所成的角为钝角即且与不平行,即,所以.故答案为.三、解答题16.已知复数.(1)若z是实数,求实数m的值;(2)若z是虚数,求实数m的取值范围;(3)若z是纯虚数,求实数m的值.【正确答案】(1)或(2)且(3)【分析】(1)根据复数为实数的充要条件列式求解即可.(2)根据复数为虚数的充要条件列式求解即可.(3)根据复数为纯虚数的充要条件列式求解即可.【小问1详解】若z是实数,则,解得或.【小问2详解】若z是虚数,则,解得且.【小问3详解】若z是纯虚数,则解得.17.若在中,已知,,,解此三角形.【正确答案】答案见解析【分析】利用正弦定理可得答案.【详解】由正弦定理,知,,,,.18.已知向量,.(1)求与的坐标;(2)求向量,的夹角的余弦值.【正确答案】(1),.(2)【分析】(1)利用平面向量线性运算的坐标表示运算;(2)利用平面向量夹角的坐标表示运算.【小问1详解】,.【小问2详解】,,,,.19.在中,角A,B,C所对的边分别为a,b,c.若,,,求:(1)角B;(2)的面积S.【正确答案】(1)(2).【分析】(1)正弦定理求解;(2)根据面积公式求解.【小问1详解】由正弦定理,得,因为在中,且,所以.【小问2详解】因为,所以.所以.20.设是不共线的两个非零向量.(1)若,求证:三点共线;(2)若与共线,求实数k的值.【正确答案】(1)证明见解析(2)【分析】(1)要证明三点共线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论