云南省勐海县第三中学2025年高三二模数学试题试卷解析_第1页
云南省勐海县第三中学2025年高三二模数学试题试卷解析_第2页
云南省勐海县第三中学2025年高三二模数学试题试卷解析_第3页
云南省勐海县第三中学2025年高三二模数学试题试卷解析_第4页
云南省勐海县第三中学2025年高三二模数学试题试卷解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省勐海县第三中学2025年高三二模数学试题试卷解析注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为()A. B. C. D.2.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是()A. B. C. D.3.已知函数在区间上恰有四个不同的零点,则实数的取值范围是()A. B. C. D.4.已知某几何体的三视图如右图所示,则该几何体的体积为()A.3 B. C. D.5.已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为()A. B. C. D.6.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为()A.-1 B.1 C. D.7.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为()A.π B.π C.π D.2π8.已知,则下列不等式正确的是()A. B.C. D.9.圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.10.已知,则的值构成的集合是()A. B. C. D.11.下列函数中,在区间上单调递减的是()A. B. C. D.12.已知平行于轴的直线分别交曲线于两点,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知F为双曲线的右焦点,过F作C的渐近线的垂线FD,D为垂足,且(O为坐标原点),则C的离心率为________.14.已知满足且目标函数的最大值为7,最小值为1,则___________.15.函数在的零点个数为_________.16.高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的参数方程为(为参数).在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值.18.(12分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.(1)求的方程;(2)若点在圆上,点为坐标原点,求的取值范围.19.(12分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.20.(12分)在孟德尔遗传理论中,称遗传性状依赖的特定携带者为遗传因子,遗传因子总是成对出现例如,豌豆携带这样一对遗传因子:使之开红花,使之开白花,两个因子的相互组合可以构成三种不同的遗传性状:为开红花,和一样不加区分为开粉色花,为开白色花.生物在繁衍后代的过程中,后代的每一对遗传因子都包含一个父系的遗传因子和一个母系的遗传因子,而因为生殖细胞是由分裂过程产生的,每一个上一代的遗传因子以的概率传给下一代,而且各代的遗传过程都是相互独立的.可以把第代的遗传设想为第次实验的结果,每一次实验就如同抛一枚均匀的硬币,比如对具有性状的父系来说,如果抛出正面就选择因子,如果抛出反面就选择因子,概率都是,对母系也一样.父系、母系各自随机选择得到的遗传因子再配对形成子代的遗传性状.假设三种遗传性状,(或),在父系和母系中以同样的比例:出现,则在随机杂交实验中,遗传因子被选中的概率是,遗传因子被选中的概率是.称,分别为父系和母系中遗传因子和的频率,实际上是父系和母系中两个遗传因子的个数之比.基于以上常识回答以下问题:(1)如果植物的上一代父系、母系的遗传性状都是,后代遗传性状为,(或),的概率各是多少?(2)对某一植物,经过实验观察发现遗传性状具有重大缺陷,可人工剔除,从而使得父系和母系中仅有遗传性状为和(或)的个体,在进行第一代杂交实验时,假设遗传因子被选中的概率为,被选中的概率为,.求杂交所得子代的三种遗传性状,(或),所占的比例.(3)继续对(2)中的植物进行杂交实验,每次杂交前都需要剔除性状为的个体假设得到的第代总体中3种遗传性状,(或),所占比例分别为.设第代遗传因子和的频率分别为和,已知有以下公式.证明是等差数列.(4)求的通项公式,如果这种剔除某种遗传性状的随机杂交实验长期进行下去,会有什么现象发生?21.(12分)已知函数,.(1)若时,解不等式;(2)若关于的不等式在上有解,求实数的取值范围.22.(10分)已知数列的前项和为,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.2、A【解析】

根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,,,则,化简得,当点到(轴)距离最大时,的面积最大,∴面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.3、A【解析】

函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数得出函数的单调性和最值,由此可根据方程解的个数得出的范围.【详解】由题意得有四个大于的不等实根,记,则上述方程转化为,即,所以或.因为,当时,,单调递减;当时,,单调递增;所以在处取得最小值,最小值为.因为,所以有两个符合条件的实数解,故在区间上恰有四个不相等的零点,需且.故选:A.【点睛】本题考查复合函数的零点.考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力.4、B【解析】由三视图知:几何体是直三棱柱消去一个三棱锥,如图:

直三棱柱的体积为,消去的三棱锥的体积为,

∴几何体的体积,故选B.点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积.5、C【解析】

由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解【详解】先画出图形,由球心到各点距离相等可得,,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,故选:C【点睛】本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题6、D【解析】

根据三角形中位线的性质,可得到的距离等于△的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.【详解】如图所示:因为是△的中位线,所以到的距离等于△的边上高的一半,所以,由此可得,当且仅当时,即为的中点时,等号成立,所以,由平行四边形法则可得,,将以上两式相加可得,所以,又已知,根据平面向量基本定理可得,从而.故选:D【点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.7、C【解析】

两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故选C.8、D【解析】

利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项.【详解】已知,赋值法讨论的情况:(1)当时,令,,则,,排除B、C选项;(2)当时,令,,则,排除A选项.故选:D.【点睛】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题.9、B【解析】

三视图对应的几何体为如图所示的几何体,利用割补法可求其体积.【详解】根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,把该几何体补成如下图所示的圆柱,其体积为,故原几何体的体积为.故选:B.【点睛】本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.10、C【解析】

对分奇数、偶数进行讨论,利用诱导公式化简可得.【详解】为偶数时,;为奇数时,,则的值构成的集合为.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属于基本题.11、C【解析】

由每个函数的单调区间,即可得到本题答案.【详解】因为函数和在递增,而在递减.故选:C【点睛】本题主要考查常见简单函数的单调区间,属基础题.12、A【解析】

设直线为,用表示出,,求出,令,利用导数求出单调区间和极小值、最小值,即可求出的最小值.【详解】解:设直线为,则,,而满足,那么设,则,函数在上单调递减,在上单调递增,所以故选:.【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

求出焦点到渐近线的距离就可得到的等式,从而可求得离心率.【详解】由题意,一条渐近线方程为,即,∴,由得,∴,,∴.故答案为:2.【点睛】本题考查求双曲线的离心率,解题关键是求出焦点到渐近线的距离,从而得出一个关于的等式.14、-2【解析】

先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大最小值时所在的顶点即可.【详解】由题意得:目标函数在点B取得最大值为7,在点A处取得最小值为1,∴,,∴直线AB的方程是:,∴则,故答案为.【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值的方法,属于基础题.15、1【解析】

本问题转化为曲线交点个数问题,在同一直角坐标系内,画出函数的图象,利用数形结合思想进行求解即可.【详解】问题函数在的零点个数,可以转化为曲线交点个数问题.在同一直角坐标系内,画出函数的图象,如下图所示:由图象可知:当时,两个函数只有一个交点.故答案为:1【点睛】本题考查了求函数的零点个数问题,考查了转化思想和数形结合思想.16、20【解析】

根据系统抽样的定义将56人按顺序分成4组,每组14人,则1至14号为第一组,15至28号为第二组,29号至42号为第三组,43号至56号为第四组.而学号6,34,48分别是第一、三、四组的学号,所以还有一个同学应该是15+6-1=20号,故答案为20.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(1)由加减消元得直线的普通方程,由得圆的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果试题解析:解:(Ⅰ)由得直线l的普通方程为x+y﹣3﹣=0又由得ρ2=2ρsinθ,化为直角坐标方程为x2+(y﹣)2=5;(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0设t1,t2是上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.18、(1);(2).【解析】

(1)根据焦点坐标和离心率,结合椭圆中的关系,即可求得的值,进而得椭圆的标准方程.(2)设出直线的方程为,由题意可知为中点.联立直线与椭圆方程,由韦达定理表示出,由判别式可得;由平面向量的线性运算及数量积定义,化简可得,代入弦长公式化简;由中点坐标公式可得点的坐标,代入圆的方程,化简可得,代入数量积公式并化简,由换元法令,代入可得,再令及,结合函数单调性即可确定的取值范围,即确定的取值范围,因而可得的取值范围.【详解】(1)分别是椭圆的左焦点和右焦点,则,椭圆的离心率为则解得,所以,所以的方程为.(2)设直线的方程为,点满足,则为中点,点在圆上,设,联立直线与椭圆方程,化简可得,所以则,化简可得,而由弦长公式代入可得为中点,则点在圆上,代入化简可得,所以令,则,,令,则令,则,所以,因为在内单调递增,所以,即所以【点睛】本题考查了椭圆的标准方程求法,直线与椭圆的位置关系综合应用,由韦达定理研究参数间的关系,平面向量的线性运算与数量积运算,弦长公式的应用及换元法在求取值范围问题中的综合应用,计算量大,属于难题.19、(1);(2).【解析】

(1)在已知极坐标方程两边同时乘以ρ后,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2可得曲线C的直角坐标方程;(2)联立直线l的参数方程与x2=4y由韦达定理以及参数的几何意义和弦长公式可得弦长与已知弦长相等可解得.【详解】解:(1)在ρ+ρcos2θ=8sinθ中两边同时乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲线C的直角坐标方程为:x2=4y.(2)联立直线l的参数方程与x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,设A,B两点对应的参数分别为t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.【点睛】本题考查了简单曲线的极坐标方程,属中档题.20、(1),(或),的概率分别是,,.(2)(3)答案见解析(4)答案见解析【解析】

(1)利用相互独立事件的概率乘法公式即可求解.(2)利用相互独立事件的概率乘法公式即可求解.(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论