




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区平煤高级中学2025年高三下学期5月月考数学试题理试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是()A. B. C. D.2.若函数有两个极值点,则实数的取值范围是()A. B. C. D.3.在复平面内,复数(为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.设曲线在点处的切线方程为,则()A.1 B.2 C.3 D.45.已知随机变量的分布列是则()A. B. C. D.6.阅读下面的程序框图,运行相应的程序,程序运行输出的结果是()A.1.1 B.1 C.2.9 D.2.87.若,则,,,的大小关系为()A. B.C. D.8.若双曲线的渐近线与圆相切,则双曲线的离心率为()A.2 B. C. D.9.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},则下列结论正确的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B10.给出下列四个命题:①若“且”为假命题,则﹑均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题,,则命题,;④设集合,,则“”是“”的必要条件;其中正确命题的个数是()A. B. C. D.11.函数的图象大致为A. B. C. D.12.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为()A.1010.1 B.10.1 C.lg10.1 D.10–10.1二、填空题:本题共4小题,每小题5分,共20分。13.若函数,则使得不等式成立的的取值范围为_________.14.《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为__________.15.在三棱锥中,已知,且平面平面,则三棱锥外接球的表面积为______.16.已知函数,,若函数有3个不同的零点x1,x2,x3(x1<x2<x3),则的取值范围是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱中,侧面是菱形,其对角线的交点为,且.(1)求证:平面;(2)设,若直线与平面所成的角为,求二面角的正弦值.18.(12分)在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为4sin.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.19.(12分)已知圆,定点,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线(1)求曲线的方程(2)过点的直线与交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上,若存在,求出该直线方程;若不是,说明理由.20.(12分)已知函数,,(1)讨论的单调性;(2)若在定义域内有且仅有一个零点,且此时恒成立,求实数m的取值范围.21.(12分)在锐角三角形中,角的对边分别为.已知成等差数列,成等比数列.(1)求的值;(2)若的面积为求的值.22.(10分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【详解】令,则当时,,又,所以为偶函数,从而等价于,因此选B.【点睛】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.2、A【解析】试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,∴.考点:利用导数研究函数极值点【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.3、D【解析】
将复数化简得,,即可得到对应的点为,即可得出结果.【详解】,对应的点位于第四象限.故选:.【点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.4、D【解析】
利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题5、C【解析】
利用分布列求出,求出期望,再利用期望的性质可求得结果.【详解】由分布列的性质可得,得,所以,,因此,.故选:C.【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.6、C【解析】
根据程序框图的模拟过程,写出每执行一次的运行结果,属于基础题.【详解】初始值,第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;第五次循环:,;第六次循环:,;第七次循环:,;第九次循环:,;第十次循环:,;所以输出.故选:C【点睛】本题考查了循环结构的程序框图的读取以及运行结果,属于基础题.7、D【解析】因为,所以,因为,,所以,.综上;故选D.8、C【解析】
利用圆心到渐近线的距离等于半径即可建立间的关系.【详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.9、C【解析】试题分析:集合考点:集合间的关系10、B【解析】
①利用真假表来判断,②考虑内角为,③利用特称命题的否定是全称命题判断,④利用集合间的包含关系判断.【详解】若“且”为假命题,则﹑中至少有一个是假命题,故①错误;当内角为时,不是象限角,故②错误;由特称命题的否定是全称命题知③正确;因为,所以,所以“”是“”的必要条件,故④正确.故选:B.【点睛】本题考查命题真假的问题,涉及到“且”命题、特称命题的否定、象限角、必要条件等知识,是一道基础题.11、D【解析】
由题可得函数的定义域为,因为,所以函数为奇函数,排除选项B;又,,所以排除选项A、C,故选D.12、A【解析】
由题意得到关于的等式,结合对数的运算法则可得亮度的比值.【详解】两颗星的星等与亮度满足,令,.故选A.【点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
分,两种情况代入讨论即可求解.【详解】,当时,,符合;当时,,不满足.故答案为:【点睛】本题主要考查了分段函数的计算,考查了分类讨论的思想.14、【解析】
由已知可得△AEF、△PEF均为直角三角形,且AF=2,由基本不等式可得当AE=EF=2时,△AEF的面积最大,然后由棱锥体积公式可求得体积最大值.【详解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,则BC⊥AE,又PB⊥AE,则AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,结合条件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均为直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,当且仅当AE=EF=2时,取“=”,此时△AEF的面积最大,三棱锥P﹣AEF的体积的最大值为:VP﹣AEF===.故答案为【点睛】本题主要考查直线与平面垂直的判定,基本不等式的应用,同时考查了空间想象能力、计算能力和逻辑推理能力,属于中档题.15、【解析】
取的中点,设等边三角形的中心为,连接.根据等边三角形的性质可求得,,由等腰直角三角形的性质,得,根据面面垂直的性质得平面,,由勾股定理求得,可得为三棱锥外接球的球心,根据球体的表面积公式可求得此外接球的表面积.【详解】在等边三角形中,取的中点,设等边三角形的中心为,连接.由,得,,由已知可得是以为斜边的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,为三棱锥外接球的球心,外接球半径,三棱锥外接球的表面积为.故答案为:【点睛】本题考查三棱锥的外接球的表面积,关键在于根据三棱锥的面的关系、棱的关系和长度求得外接球的球心的位置,球的半径,属于中档题.16、【解析】
先根据题意,求出的解得或,然后求出f(x)的导函数,求其单调性以及最值,在根据题意求出函数有3个不同的零点x1,x2,x3(x1<x2<x3),分情况讨论求出的取值范围.【详解】解:令t=f(x),函数有3个不同的零点,即+m=0有两个不同的解,解之得即或因为的导函数,令,解得x>e,,解得0<x<e,可得f(x)在(0,e)递增,在递减;f(x)的最大值为,且且f(1)=0;要使函数有3个不同的零点,(1)有两个不同的解,此时有一个解;(2)有两个不同的解,此时有一个解当有两个不同的解,此时有一个解,此时,不符合题意;或是不符合题意;所以只能是解得,此时=-m,此时有两个不同的解,此时有一个解此时,不符合题意;或是不符合题意;所以只能是解得,此时=,综上:的取值范围是故答案为【点睛】本题主要考查了函数与导函数的综合,考查到了函数的零点,导函数的应用,以及数形结合的思想、分类讨论的思想,属于综合性极强的题目,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】
(1)根据菱形的特征和题中条件得到平面,结合线面垂直的定义和判定定理即可证明;
2建立空间直角坐标系,利用向量知识求解即可.【详解】(1)证明:∵四边形是菱形,,平面平面,又是的中点,,又平面(2)∴直线与平面所成的角等于直线与平面所成的角.平面,∴直线与平面所成的角为,即.因为,则在等腰直角三角形中,所以.在中,由得,以为原点,分别以为轴建立空间直角坐标系.则所以设平面的一个法向量为,则,可得,取平面的一个法向量为,则,所以二面角的正弦值的大小为.(注:问题(2)可以转化为求二面角的正弦值,求出后,在中,过点作的垂线,垂足为,连接,则就是所求二面角平面角的补角,先求出,再求出,最后在中求出.)【点睛】本题主要考查了线面垂直的判定以及二面角的求解,属于中档题.18、(1)(2)(2,).【解析】
(1)利用极坐标和直角坐标的转化公式求解.(2)先把两个方程均化为普通方程,求解公共点的直角坐标,然后化为极坐标即可.【详解】(1)∵曲线C的极坐标方程为,∴,则,即.(2),∴,联立可得,(舍)或,公共点(,3),化为极坐标(2,).【点睛】本题主要考查极坐标和直角坐标的转化及交点的求解,熟记极坐标和直角坐标的转化公式是求解的关键,交点问题一般是统一一种坐标形式求解后再进行转化,侧重考查数学运算的核心素养.19、(1);(2)存在,.【解析】
(1)设以为直径的圆心为,切点为,取关于轴的对称点,连接,计算得到,故轨迹为椭圆,计算得到答案.(2)设直线的方程为,设,联立方程得到,,计算,得到答案.【详解】(1)设以为直径的圆心为,切点为,则,取关于轴的对称点,连接,故,所以点的轨迹是以为焦点,长轴为4的椭圆,其中,曲线方程为.(2)设直线的方程为,设,直线的方程为,同理,所以,即,联立,所以,代入得,所以点都在定直线上.【点睛】本题考查了轨迹方程,定直线问题,意在考查学生的计算能力和综合应用能力.20、(1)时,在上单调递增,时,在上递减,在上递增.(2).【解析】
(1)求出导函数,分类讨论,由确定增区间,由确定减区间;(2)由,利用(1)首先得或,求出的最小值即可得结论.【详解】(1)函数定义域是,,当时,,单调递增;时,令得,时,,递减,时,,递增,综上所述,时,在上单调递增,时,在上递减,在上递增.(2)易知,由函数单调性,若有唯一零点,则或.当时,,,从而只需时,恒成立,即,令,,在上递减,在上递增,∴,从而.时,,,令,由,知在递减,在上递增,,∴.综上所述,的取值范围是.【点睛】本题考查用导数研究函数的单调性,考查函数零点个数与不等式恒成立问题,解题关键在于转化,不等式恒成立问题通常转化为求函数的最值.这又可通过导数求解.21、(1);(2).【解析】
(1)根据成等差数列与三角形内角和可知,再利用两角和的正切公式,代入化简可得,同理根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中学教师资格《综合素质》教育案例深度剖析模拟试卷含答案详解
- 2025年小学语文毕业升学考试全真模拟卷(口语表达与素质教育训练试题)
- 2025年养老护理员专业知识测试卷:养老护理员老年病学综合实践技能试题
- 2025年小学英语毕业考试模拟卷:英语阅读理解技巧强化训练试题册
- 2025年小学英语毕业模拟试题:英语歌曲欣赏与演唱课程设计
- 2025年成人高考《语文》模拟冲刺题库:作文素材搜集与运用能力训练试题
- 2025年小学英语毕业考试模拟卷(英语绘本阅读)-绘本故事背景知识拓展试卷
- 2025年小学教师资格《综合素质》教育创新实践题目汇编及详细答案
- 2025年消防员消防知识培训考试题库:消防队伍建设与管理创新案例解析大全
- 甲乳外科引流管的护理
- 《食品感官分析技术》最全完整版课件全套教学教程
- 三年级下册数学课件-4.1 整体与部分 ▏沪教版 (共21张ppt)
- 【课件】抒情与写意-文人画 课件高中美术人美版(2019)美术鉴赏
- 14.1兽药陈列环境温湿度记录表
- 战略管理学英文课件:14 Leadership and Strategic Change
- 辽宁省地方标准编制说明
- (完整word)燃油系统完整性(FMVSS 301)
- 质性研究方法3-质性研究的编码课件
- PRS-7741-102技术使用说明书
- 心理治疗师考试精读与习题
- 幼儿园中班数学:《区别基数与序数》 课件
评论
0/150
提交评论