




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二十四章圆
测试1圆
学习要求
理解圆的有关概念,掌握圆和弧的表示方法,掌握同圆的半径相等这一性质.
课堂学习检测
一、基础知识填空
1.在一个内,线段0A烧它固定的一个端点0,另一个端点A所形成的
叫做圆.这个固定的端点。叫做,线段0A叫做.以。点为圆心的圆记作
,读作.
2.战国时期的《墨经》中对国的定义是.
3.由圆的定义可知:
(1)圆上的各点到圆心的距离都等于;在一个平面内,到圆心的距离等于半径长
的点都在.因此,圆是在一个平面内,所有到一个的距离等于
的组成的图形.
(2)要确定一个圆,需要两个基本条件,一个是,另一个是,其中,
确定圆的位置,确定圆的大小.
4.连结的叫做弦.经过_______的叫做直径,并且直
径是同一圆中的弦.
5.阿.L的部分叫做网弧,简称,以A,B为端点的弧记作,
读作或________.
6.圆的的两个端点把圆分成两条弧,每都叫做半圆.
7.在一个圆中叫做优弧:叫做劣弧.
8.半径相等的两个圆叫做.
二、填空题
9.如下图,(1)若点。为。。的圆心,则线段是圆0的半径;线段是
圆O的弦,其中最长的弦是;是劣弧;是半圆.
⑵若NA=40°,贝ijNABO=,ZC=,ZABC=.
C
综合、运用、诊断
10.已知:如图,在同心圆中,大圆的弦A8交小圆于C,。两点.
(1)求证:ZAOC-ZROD-
(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.
II.已知:如图,八B是。。的直径,CO是。。的弦,八B,的延长线交于E,AB=2DE,
NE=18°,求NC及N40C的度数.
拓广、探究、思考
12.已知:如图,△ABC,试用直尺和圆规画出过A,B,。三点的。O.
测试2垂直于弦的直径
学习要求
1.理解圆是轴对称图形.
2.掌握垂直于弦的宜径的性质定理及其推论.
课堂学习检测
一、基础知识填空
1.圆是对称图形,它的对称釉是:圆又是对称图形,
它的对称中心是.
2.垂直于弦的直径的性质定理是.
3.平分的直径______于弦,并且平分.
二、填空题
4.圆的半径为5cm,圆心到弦A8的距离为4cm,则A8=cm.
5.如图,C。为€)0的直径,AB_LC。于,OE=8cm,CE=2cm,则AB=_____cm.
D
5题图
6.如图,的半径。。为6cm,弦A&8垂直平分OC,则A8=_____cm»ZAOB=______.
6题图
7.如图,A8为。O的弦,NHO8=90',AB=a,则04=______,0点到AB的距离=______.
a7题图
8.如图,。0的弦A8垂直于CO,E为垂足,AE=3,BE=7,fiAB=CD,则圆心0到CO
的距离是__.
◎8题图
9.如图,P为。。的弦A8上的点,PA=6,PB=2,。。的半径为5,则OP=_____.
9题图
10.如图,。0的弦AB垂直于AC,AB=6cm,4C=4cm,则0O的半径等于______cm.
AB
10题图
综合、运用、诊断
11.已知:如图,A8是。。的直径,弦CD交AB于E点,BE=LAE=5,ZAEC=30°,
求C7)的长.
12.已知:如图茄,试用尺规将它四等分.
13.今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.(选自
《九章算术》卷第九“句股”中的第九题,1尺=10寸).
14.已知;。。的半径OA=1,弦A3、AC的长分别为血,行,求NBAC的度数.
15.已知:。。的半径为25cm,弦AB=40cm,弦CO=48cm,48〃CO.
求这两条平行弦AA.C7T之间的距离.
拓广、探究、思考
16.已知:如图,A,8是半圆。上的两点,C。是。。的直径,NAOQ=80°,8是介的
中点.
(1)在C。上求作一点P,使得4P+P8最短:
⑵若CD=4cm,求AP+PB的最小值.
17.如图,有一圆弧形的拱桥,桥下水面宽度为7.2m,拱顶高出水面2.4m,现有一竹排运
送一货箱从桥下经过,已知货箱长10m,宽3m,高2m(竹排与水而持平).问:该货箱
能否顺利通过该桥?
测试3弧、弦、圆心角
学习要求
1.理解圆心角的概念.
2.掌握在同圆或等圆中,弧、弦、圆心角及弦心距之间的关系.
课堂学习检测
一、基础知识填空
I.的叫做圆心角.
2.如图,若&氏为。。周长口勺%,则/AO8=.
n
B
3.在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有•组量相等,那么_
4.在圆中,圆心与弦的距离(即自圆心作弦的垂线段的长)叫做弦心距,不难证明,在同圆
或等圆中,如果两条弦相等,那么它们的弦心距也__.反之,如果两条弦的弦心距
相等,那么.
二、解答题
5.已知:如图,A、B、C、。在00上,AB=CD.
求证:ZAOC=ZDOB.
综合、运用、诊断
6.己知:如图,P是NA0B的角平分线0C上的一点,(DP与。A相交于E,F点,与0B
相交于G,〃点,试确定线段E尸与G"之间的大小关系,并证明你的结论.
7.已知:如图,A8为。O的直径,C,。为。。上的两点,且C为众的中点,若/
BAD=20°,求/ACO的度数.
拓广、探究、思考
8.。0中,M为我的中点,则下列结论正确的是().
A.AA2AMB.AB=2AM
C.AR<?AMD.AA与2AM的大小不能确定
9.如图,。。中,A8为直径,弦CD交ABTP,ROP=PC,试猜想令与篇之间的关系,
并证明你的猜想.
AB
10.如图,。。中,直径48=15cm,有一条长为9cm的动弦C。在不四匕滑动(点C与4,
点。与B不重合),C尸1C。交AB于EDEICD^AB^E.
⑴求证:AE=BF:
(2)在动弦CO滑动的过程中,四边形CDEF的而枳是否为定值?若是定值,请给出证明
并求这个定值;若不是,请说明理由.
测试4圆周角
学习要求
1.理解圆周角的概念.
2.掌握圆周角定理及其推论.
3.理解圆内接四边形的性质,探究四点不共圆的性质.
课堂学习检测
一、基础知识填空
I.在圆上,并且角的两边都的角叫做圆周角.
2.在同一圆中,一条弧所对的圆周角等于圆心角的.
3.在同圆或等圆中,所对的圆周角.
4.所对的圆周角是直角.90"的圆周角是直径.
5.如图,若五边形A3CQE是00的内接正五边形,则N3OC=,NABE=
ZADC=»ZABC=.
6.如图,若六边形ABCDEb是。。的内接正六边形,则NAEg,ZFAE=
NOAB=,ZEFA=.
6题图
7.如图,△ABC是0O的内接正三角形,若P是蓝上一点,则NBPC=;若M是访
上一点,则N8MC=.
7题图
二、选择题
8.在。。中,若圆心角N40B=100°,C是标上一点,则N4C8等于().
A.80°B,100°C.130°D.140°
9.在圆中,弦A8,C。相交于E.若N4OC=46°,N8CD=33°,则N。仍等于().
A.13°B,79°C.38.5°D.101°
10.如图,AC是。O的直径,弦A8〃C7),若/84C=32°,则NAO。等于().
10题图
A.64°C.32°D.76°
11.如图,弦AB,CO相交于£点,若NBAC=27°,N3EC=64°,则NAO。等于().
A.37°B.74°C.54aD.64"
12.如图,四边形ABC。内接于。0,若N4OO=138°,则它的一个外角NOCE等于().
A.69B.42C.48°D.38°
13.如图,△ABC内接于OO,NA=50°,Z4fiC=60°,4。是。。的直径,4。交AC于
点£连结。C,则NAEB等于(
A.70°B.90°D.120°
综合、运用、诊断
14.已知:如图,△A8C内接于。0,«C=12cm,N4=60°.求。。的直径.
15.已知:如图,AB是。。的直径,弦CQ_L48于E,NACQ=30°,4E=2cm.求。8长.
16.已知:如图,△月8C内接于圆,AO_L3C于3,弦5〃_LAC于E,交A。于F.
求证:FE=EH.
17.已知:如图,。0的直径AE=IOcm,N8=/EAC.求AC的长.
拓广、探究、思考
18.已知:如图,△A8C内接于<90,A”平分N84C交。。于点M,ADL8C于。.
求证:NMAO=NMAD.
M
19.已知:如图,是。。的直径,CO为弦,且A8_LC。于E,6为OC延长线上一点,
连结A产交。。于M.
求i正:NAMD=NFMC.
测试5点和圆的位置关系
学习要求
1.能根据点到圆心的距离与圆的半径大小关系,确定点与圆的位置关系.
2.能过不在同一直线上的三点作圆,理解三角形的外心概念.
3.初步r解反证法,学习如何用反证法进行证明.
课堂学习检测
一、基础知识填空
I.平面内,设。。的半径为r,点尸到圆心的距离为4则有心厂。点P在。0
d=rO点P在OO:d〃U>点尸在OO.
2.平面内,经过已知点A,旦半径为R的圆的圆心尸点在
3.平面内,经过已知两点4,8的圆的圆心尸点在
4.确定一个圆,
5.在OO上任取三点4,B,C,分别连结A8,BC,CA,则A48C叫做的:O
0叫做△ABC的;。点叫做△A8C的,它是aABC的交点.
6.锐角三角形的外心在三角形的部,钝角三角形的外心在三角形的
_部,直角三角形的外心在.
7.若正△A3C外接圆的半径为R,则△ABC的面积为.
8.若正△ABC的边长为m则它的外接圆的面积为.
9.若△ABC中,NC=90",AC=IOcm,8C=24cm,则它的外接圆的直径为.
10.若△A8C内接于。O,8C=I2cm,O点到3C的距离为8cm,则。0的周长为.
二、解答题
11.已知:如图,/XABC.
作法:求件△ABC的外接版I0.
综合、运用、诊断
一、选择题
12.已知:A,B,C,D,E五个点中无任何三点共线,无任何四点共圆,那么过其中的三
点作圆,最多能作出().
A.5个圆B.8个圆C.10个圆D.12个圆
13.下列说法正确的是().
A.三点确定一个圆
B.三角形的外心是三角形的中心
C.三角形的外心是它的三个角的角平分线的交点
D.等腰三角形的外心在顶角的角平分线上
14.下列说法不正确的是().
A.任何一个三角形都有外接I员I
B.等边三角形的外心是这个三角形的中心
C.直角三角形的外心是其斜边的中点
D.一个三角形的外心不可能在三角形的外部
15.正三角形的外接圆的半径和高的比为().
A.1:2B.2:3C.3:4D.1:V3
16.已知。。的半径为I,点P到圆心。的距离为d,若关于x的方程好一标十占0有实根,
则点P().
A.在。O的内部B.在0O的外部
C.在。。上D.在。。上或。。的内部
二、解答题
17.在平面直角坐标系中,作以原点O为圆心,半径为4的。O,试确定点A(—2,-3),
8(4,-2),C(—26,2)与。。的位置关系.
18.在直线),=#1上是否存在一点P,使得以P点为圆心的圆经过已知两点4—3,2),
B(\,2).若存在,求出P点的坐标,并作图.
测试6自我检测(一)
一、选择题
1.如图,ZVIBC内接丁,OO,若AC=BC,弦CO平分NAC3,则下列结论中,正确的个数
是()•
①C。是。O的直径②C。平分弦A8③COJM8
®AC=BC⑤筋=前
A.2个B.3个C.4个D.5个
2.如图,。。是(DO的直径,A3_LCZ)于£若AB=10cm,CE:ED=\:5,则。O的半径
是().
2题图
A.55/2cmB.4V3cmC.35/5cmD.2娓cm
3.如图,A3是。。的直径,AB=10cm,若弦CD=8cm,则点A、3到直线C。的距离之和
为().
A.12cmB.8cmC.6cmD.4cm
4.△月3c内接于OO,OO_LBC于。,若NA=50°,则N8OO等于().
A.30°B,25°C.50°D.100°
5.有四个命题,其中正确的命题是().
①经过三点一定可以作一个圆
②任意一个三角形有且只有一个外接圆
③三角形的外心到三角形的三个顶点的距离相等
④在圆中,平分弦的直径一定垂直于这条弦
A.①、②、③、④B.①、②、③
C.②、③、④D.②、③
6.在园内接四边形ABC。中,若NA:N8:NC=2:3:6,贝等于().
A.67.5°B,135°C.112.5°D.45°
二、填空题
7.如图,AC是。。的直径,Zl=46°,N2=28°,则NBCD=.
7题图
8.如图,A8是。。的直径,若/C=58°,则/£>=
8题图
9.如图,A8是。。的直径,弦CD平分NAC8,若/?/>=!0cm,则.48=,NBCD二
D
9题图
10.若△48C内接于G)O,OC=6cm,AC=6,5cm,则N8等于
三、解答题
11.已知:如图,OO中,AB=AC,OO_LAB于。,OEIAC^E.
求证:ZODE=ZOED.
12.已知:如图,AB是。0的直径,0。_1_3。于。,AC=8cm,求O。的长.
13.已知:如图,点。的坐标为(0,6),过原点O,。点的圆交x轴的正半轴于八点.圆周
角NOC4=30°,求A点的坐标.
14.已知:如图,试用尺规作图确定这个圆的圆心.
15.已知:如图,半圆0的直径A3=12cm,点C,D是这个半圆的三等分点
求NC4。的度数及弦AC,AD和S3围成的图形(图中阴影部分)的面积S.
测试7直线和圆的位置关系(一)
学习要求
1.理解直线与圆的相交、相切、相离三种位置关系,掌握它们的判定方法.
2.掌握切线的性质和切线的判定,能正确作圆的切线.
课堂学习检测
一、基础知识填空
I.直线与圆在同一平面上做相对运动时,其位置关系有种,它们分别是
2.直线和圆时,叫做直线和圆相交,这条直线叫做.
直线和圆_________时,叫做直线和圆相切,这条直线叫做.
这个公共点叫做.
直线和圆时,叫做直线和圆相离.
3.设。O的半径为r,圆心。到宜线/的距离为d,
O直线/和圆。相离;
O直线/和圆。相切;
<=>直线/和圆。相交.
4.圆的切线的性质定理是.
5.圆的切线的判定定理是.
6.已知直线/及其上一点4,则与直线/相切于4点的圆的圆心尸在
二、解答题
7.已知:RtZSABC中,ZC=90q,BC=5cm,7g2cm,以C点为圆心,作半径为R的圆,
求:
(1)当R为何值时,0C和直线A8相离?(2)当R为何值时,0C和直线A3相切?
(3)当R为何值时,0C和直线A3相交?
8.已知:如图,P是N4O8的角平分线OC上一点.PE上OA于E.以P点为圆心,PE长
为半径作。P.
求证:。尸与08相切.
9.已知:如图,△ABC内接于OO,过4点作直线。E,当/必氏/C时,试确定直线。E
与。O的位置关系,并证明你的结论.
综合、运用、诊断
10.已知:如图,割线A8C与。O相交于8,C两点,E是俄的中点,。是。。上一点,
若NEDA=NAMD.
求证:AO是00的切线.
11.已知:如图,RtZ\A8C中,ZACB=90°,以AC为直径的半圆。交A8于F,E是BC
的中点.
求证:直线“是半圆。的切线.
12.已知:如图,△ABC中,AO_LBC于。点,8C以△ABC的中位线为直径作半
2
圆0,试确定3c与半圆0的位置关系,并证明你的结论.
13.已知:如图,△八8。中,AC=8C以8C为直径的。。交八8于E点,直线E/LLAC于
F.
求证:E”与。0相切.
14.已知:如图,以△ABC的一边8C为直径作半圆,交A8于E,过E点作半圆0的切线
恰与4C垂直,试确定边AC与4c的大小关系,并证明你的结论.
0
15.已知:如图,PA切。0于A点,PO//AC,BC是0O的直径.请问:直线是否与
。。相切?说明你的理由.
拓广、探究、思考
16.已知:如图,PA切。。于A点,PO交。。于B点.PA=l5cm,PB=9cm.
求。。的半径长.
测试8直线和圆的位置关系(二)
学习要求
1.掌握圆的切线的性盾及判定定理.
2.理解切线长的概念,掌握由圆外一点引圆的切线的性质.
3.理解三角形的内切圆及内心的概念,会作三角形的内切圆.
课堂学习检测
一、基础知识填空
1.经过圆外一点作圆的切线,叫做这点到圆的切线长.
2.从圆外一点可以引圆的条切线,它们的相等.这一点和
平分.
3.三角形的三个内角的平分线交于一点,这个点到_________________相等.
4.的圆叫做三角形的内切圆,内切圆的圆心是,叫做三
角形的.
5.设等边三角形的内切圆半径为心外接圆半径为R,边长为小则「:/?:«=.
6.设0为△ABC的内心,若乙4=52°,则NBOO.
二、解答题
7.已知:如图,从两个同心III。的大圆上一点A,作大圆的弦AB切小圆于C点,大圆的
弦切小圆于E点.
求证:(1)48=40:
(2)DE=BC.
8.己知:如图,PA,P3分别与0O相切于A,B两点.求证:0P垂直平分线段A8.
9.已知:如图,ZVIBC.求作:△A8C的内切圆。。.
B
10.已知:如图,PA,PB,OC分别切。。于A,B,E点、.
(1)若NP=40。,求/COD:
(2)若尸A=10cn】,求△尸CD的周长.
综合、运用、诊断
11.已知:如图,是RtZU8c的内切圆,ZC=90°.
⑴若AC=l2cm,BC=9cm»求。O的半径八
⑵若AC=A,BC=a,AB=c,求(DO的半径r.
12.已知:如图,△ABC的三边3C=a,CA=b,AB=c,它的内切圆。的半径长为r.求
△/WC的面积S.
13.已知:如图,。0内切于△ABC,N8OC=105°,NACB=90°,A8=20cm.求8C、AC
的长.
0
A
测试9自我检测(二)
一、选择题
1.已知1:如图,P4,尸8分别与。。相切于4,B总1,C为。。上一点,NAC8=65°,则
NAPB等于().
r<^2
B
1题图
A.65°B,50°C.45°D.40°
2.如图,是。。的直径,直线EC切。。于8点,若NDBC=a,则().
0
5
EB~~C
2题图
A.乙4=90°-aB.NA=a
C.NABD=aD.ZABD=90°--a
2
3.如图,△ABC中,NA=60',BC=6,它的周长为16.若G)0与BC,AC,八8三边分别
切于E,F,。点,则。尸的长为().
,二
BEC
3题图
A.2B.3C.4D.6
4.下面图形中,〜定有内切[§1的是().
A.矩形B.等腰梯形C.菱形D.平行四边形
5.等边三角形的内切圆半径、外接网半径和高的比是().
A.1:V2:A/3B,1:2:V3C.l:>/3:2D.1:2:3
二、解答题
6.已知:Wl图,直角梯形ARC。中,AD//RC.Z4/?C=90°.以AR为直径的QO切DC
边于E点,AD=3cm,BC=5cm.
求。O的面积.
DA
7.已知:如图,A5是。。的直径,F,C是。。上两点,旦菽二行\过C点作力E_LA/的
延长线于£点,交A8的延长线于。点.
(I)试判断。石与。O的位置关系,并证明你的结论;
(2)试判断NBC。与NB4C的大小关系,井证明你的结论.
8.己知:如图,尸A,分别是。。的切线,A,台为切点,AC是。。的直径,N6AO35。,
求/P的度数.
9.已知:如图,A8是。。的直径,8。是。O的弦,延长3Z)到点C,使。C=8D,连结
AC,过点。作OE_LAC,垂足为£
(1)求证:AB=AC;
(2)求证:OE为。。的切线;
(3)若。。的半径为5,Z£AC=60°,求3E的长.
DB
10.已知:如图,。。是RiZ\A4C的外接圆,A3为直径,Z4£C=30°,C。是。O的切线,
ED±AB于F.
(1)判断△OCE的形状并说明理由;
(2)设。。的半径为1,且。/=史],求证△OCEgZkOCB.
2
II.已知:如图,A3为。O的直径,PQ切。O于7,AC_LP。于C,交OO丁D.
⑴求证:AT平分N8/1C:
(2)若AD=2,TC=J3,求OO的半径.
测试10圆和圆的位置关系
学习要求
1.理解两个圆相离、相切(外切和内切)、相交、内含的概念,能利用两圆的圆心距d
与两个圆的半径n和A之间的关系,讨论两圆的位置关系.
2.对两圆相交或相切时的性质有所了解.
课堂学习检测
一、基础知识填空
1.没有的两个圆叫做这两个圆相离.当两个圆相离时,如果其中•个圆在另•个圆
的,叫做这两个圆外离;如果其中有一个圆在另一个圆的,叫做这两个圆
内含.
2.的两个圆叫做这两个圆相切.这个公共点叫做.当两个圆相切时.
如果其中的一个圆(除切点外)在另一个圆的,叫做这两个圆外切:如果其中有一
个圆(除切点外)在另一个圆的,叫做这两个圆内切.
3.的两个圆叫做这两个圆相交,这两个公共点叫做这两个圆的以这两个公共
点为端点的线段叫做两圆的.
4.设d是。。1与。。2的圆心距,门,「2(八>/2)分别是。0|和。Q的半径,则
00]与002夕卜离。d;
。Oi与。。2夕卜切=d:
0。1与0Q相交Od______________________:
00]与G)02内切<=>d;
00i与OO?内含=d:
0。|与0Q为同心圆Od___________________.
二、选择题
5.若两个圆相切于人点,它们的半径分别为10cm、4cm,则这两个圆的圆心距为().
A.14cmB.6cm
C.14cm或6cmD.8cm
6.若相交两圆的半径分别是万+1和J7-1,则这两个圆的圆心距可取的整数值的个数是
().
A.lB.2C.3D.4
综合、运用、诊断
一、填空题
7.如图,在12X6的网格图中(每个小正方形的边长均为1个单位),©A的半径为1,0B
的半径为2,要使OA与静止的©8相切,那么。4由图示位置.需向右平移个单位.
7题图
8.相交两圆的半径分别是为6cm和8cm,请你写出一个符合条件的圆心距为<
二.解答题
9.己知:如图,OOi与。0?相交于A,8两点.求证:直线。。2垂直平分A8.
9题图
10.已知:如图,与。Q外切于A点,直线/与。a、。。2分别切于8,C点,若。。|
的半径n=2cm.©O2的半径r2=3cm.求RC的长.
9
G.
B
II.已知:如图,两圆相交于A,3两点,过A点的割线分别交两圆于。,F点、,过B点的
割线分别交两圆于“,E点.
求证:HD//EF.
12.己知:相交两圆的公共弦的长为6cm,两圆的半径分别为3岳m,5cm,求这两个圆
的圆心距.
拓广、探究、思考
13.如图,工地放置的三根外径是1m的水泥管两两外切,求其最高点到地平面的距离.
14.已知:如图,①。|与O。?相交于A,B两点,圆心Oi在。。2上,过B点作两圆的割线
CD,射线。。交AC于E点.
求证:DE1AC.
B
D
15.已知:如图,0O|与。。2相交于八,B两点,过A点的割线分别交两圆于C,D,弦
CE//DH,连结E8,试判断E8与。02的位置关系,并证明你的结论.
16.如图,点A,〃在直线mV上,48=Ilcm,0A,。4的半径均为Icm.0A以每秒2cm
的速度自左向右运动,与此同时,的半径也不断增大,其半径r(cm)与时间f(s)之间
的关系式为r=l+WN0).
⑴试写出点A,6之间的距离4cm)与时间Rs)之间的函数表达式:
(2)问点4出发多少秒时两圆相切?
测试11正多边形和圆
学习要求
1.能通过把一个圆〃(〃23)等分,得到圆的内接正〃边形及外切正〃边形.
2.理解正多边形的中心、半径、中心角、边心距的概念,并能进行简单的计算.
课堂学习检测
一、基础知识填空
1.各条边_____,并且各个______也都相等的多边形叫做正多边形.
2.把一个圆分成〃(〃23)等份,依次连结各等分点所得的多边形是这个圆的.
3.一个正多边形的叫做这个正多边形的中心:叫做正多边
形的半径:正多边形每•边所对的叫做正多边形的中心角;中心到正多边形的•
边的叫做正多边形的边心距.
4.正〃边形的每一个内角等于,它的中心角等于,它的每一个外角
等于-
5.设正〃边形的半径为兄边长为小,边心距为小,则它们之间的数量关系是.这
个正〃边形的面积Sk.
6.正八边形的一个内角等于,它的中心角等于.
7.正六边形的边长小半径R,边心距r的比a:R:r=.
8.同一圆的内接正方形和正六边形的周长比为.
二、解答题
9.在卜图中,试分别按要求画出圆。的内接正多边形.
(1)正三角形(2)正方形(3)正五边形
(4)正六边形(5)正八边形(6)正十二边形
综合、运用、诊断
一、选择题
10.等边三角形的外接圆面积是内切圆面积的().
A.3倍B.5倍C.4倍D.2倍
11.己知正方形的冏长为x,它的外接圆半径为y,则y与x的函数关系式是().
A.y=——xB.y=——xC.v=-.vD.y=——x
48-2-2
12.有一个长为12cm的正六力形,若要剪一张圆形纸片完全盖住这个圆形,则这个圆形纸
片的半径最小是().
A.10cmB.12cmC.14cmD.16cm
二、解答题
13.已知:如图,正八边形A/hAvUAs/U/hAg内接于半径为H的。O.
⑴求4A3的长:(2)求四边形八以必3。的面积:(3)求此正八边形的而枳S.
4
14.已知:如图,的半径为R正方形AACD,4'H'CD分别是的内接正方形
和外切正方形.求二者的边长比A3:A'B'和面积比S内:S外.
B'BAf
拓广、探究、思考
15.已知:如图,。。的半径为R,求。0的内接正六边形、0O的外切正六边形的边长比
AB:A'B'和面积比S内:S外.
测试12弧长和扇形面积
学习要求
掌握弧长和扇形面积的计算公式,能计算由简单平面图形组合的图形的面积.
课堂学习检测
一、基础知识填空
1.在半径为R的圆中,小的圆心角所对的弧长/=.
2.和_____所用成的图形叫做扇形.在半径为R的圆中,同心角为/的扇
形面积S媒形=;若/为扇形的弧长,则S叨片.
3.如图,在半径为R的。。中,弦AB与我所围成的图形叫做弓形.
当&为劣弧时,Sm=S川杉一:
当成为优弧时,S^=+S..OAB.
-----#
3题图
4.半径为8cm的圆中,72°的圆心角所对的弧长为;弧长为8cm的圆心角约为
___(精确到1').
半径为的圆中,若扇形面积为驷则它的圆心角为.
5.5cmcm?,.若扇形面枳为
3
15兀cnR则它的圆心角为.
6.若半径为6cm的圆中,扇形面积为9兀cm—则它的弧长为—
二、选择题
7.如图,RtZ\A8。中,NC=90°,4c=8,BC=6,两等圆04,08外切,那么图中两个扇
形(即阴影部分)的面积之和为(
3
25
A.——718
4
c252-5
C.---71D.
1632
8.如图,扇形纸扇完全打开后,外侧两竹条48,4c夹角为120。,48的长为30cm,贴
纸部分BD的长为20cm,则贴纸部分的面积为().
8题图
400
A.lOOncnrB.------冗cm'
3
800,
C.800ncm?D.-----item'
3
9.如图,△48C中,8c=4,以点4为圆心,2为半径的。A与8c相切于点。,交A8于
E,交AC于几点尸是。A上一点,且NEPF=40°,则圆中阴影部分的面积是().
闻
4n4一
---
Ac.99
B.
D.版
8
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英语写作健康课课件
- 英语健康主题课件教学
- 机场净空区管理办法
- 化妆点标识管理办法
- 地铁口摊贩管理办法
- 江西外经证管理办法
- 无症状患者管理办法
- 巾帼创业贷管理办法
- 新材料试用管理办法
- 教学与科研管理办法
- GB/T 24217-2025洗油
- 2025-2030中国坚果配料行业市场现状供需分析及投资评估规划分析研究报告
- 软件渠道销售协议书
- GB/T 10781.3-2025白酒质量要求第3部分:米香型白酒
- 2025护士条例专题培训
- 运用PDCA循环规范麻醉精神药品管理
- 《腰椎间盘突出的手术治疗》课件
- 购买山地做墓地合同协议
- 绍兴市2025届小升初必考题数学检测卷含解析
- 防酒驾课件模板
- 2025年高级人工智能训练师(三级)理论考试题库-含答案
评论
0/150
提交评论