




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年高考数学第一次模拟考试数学(天津卷02)·参考答案 第I卷(选择题) 选择题,在每小题给出的四个选项中,只有一项是符合题目要求的,每小题5分。123456789BDCABBDDA第II卷(非选择题)填空题,本大题共6小题,每小题5分,共30分,试题中包含两个空的,答对1个的给3分,全部答对的给5分。10.11.6012.13.814.1015.三、解答题,本大题共5小题,共75分,解答应写出文字说明,证明过程成演算步骤。16.(15分)【解析】(Ⅰ)由得:...............................................................1分,...............................................................3分又
........................................................6分..........................8分(Ⅱ)由余弦定理得:................................................................10分又,,...............................................................13分...............................................................15分(15分)【解析】(1)解:为坐标原点,直线分别为轴,建立空间直角坐标系,设,则因为所以所以...............................................3分(2)解:因为为的中点,则,从而,设平面的法向量为,则即,得,从而,..............................................5分所以点到平面的距离为..............................................7分(3)解:由(1),时,平面与平面所成角为.则,,,..............................................8分设平面的法向量,,,则,取,得,1,,.............................................10分平面的法向量,0,,,..............................................12分由,解得或(舍去).时,平面与平面所成角为...............................................15分18.(15分)【解析】(1)设,,因为,所以,..............................................1分整理得,得(舍),或,所以;..............................................3分(2)由(1)知,,可得椭圆方程为,直线的方程为,..............................................4分A,B两点的坐标满足方程组为,..............................................5分消去y并整理,得,解得:,,..............................................7分得方程组的解和,..............................................8分不妨设:,,所以,于是,........................................10分圆心到直线的距离为,........................................11分因为,所以,..............................................13分整理得:,得(舍),或,..............................................14分所以椭圆方程为:..............................................15分19.(15分)【解析】(1)本题实质是具体理解新定义,当时,,,再分别对取得到............................................7分(2)证明大小不等式,一般利用作差法.,根据新定义:,所以,即.............................................15分20.(15分)【解析】(1)因为函数,所以;............................................3分(2)因为函数,所以,............................................4分令,则,对满足方程的有,所以,............................................5分由函数与函数的图象可知此方程一定有解,
故的一个极值点满足,............................................6分所以;........................................8分(3)设是的任意正实根,则,则存在一个非负整数,使,即为第二或第四象限角,..................................9分因为,所以在第二或第四象限变化时,变化如下,(为奇数)0+(为偶数)+0所以满足的正根都为函数的极值点,............................................11分由题可知为方程的全部正实根且满足,所以,.....................
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常熟理工学院《医学微生物与寄生虫学》2023-2024学年第二学期期末试卷
- 十堰市茂华中学2025届初三下学期4月月考物理试题含解析
- 上海兴伟学院《新媒体广告设计》2023-2024学年第二学期期末试卷
- 廉洁教育提醒课件
- 杭州医学院《电力市场概论》2023-2024学年第二学期期末试卷
- 浙江省杭州市西湖区保俶塔实验学校申花路校区2025年三下数学期末统考模拟试题含解析
- 合肥工业大学《运动生理学》2023-2024学年第二学期期末试卷
- 2025届上海市曹杨二中高三第二次调研统一测试历史试题含解析
- 山西省大同市第三中学2024-2025学年高三七校联合体考前冲刺交流考试数学试题含解析
- 江苏省常州市新北区奔牛初级中学2025年初三十月月考化学试题试卷含解析
- XXX市电子政务外网数字化监控及安全监测平台建设方案
- 《中国药物性肝损伤诊治指南(2024年版)》解读
- 《自然教育》课件-自然解说
- 2024年瓦斯防突工技能竞赛理论考试题库(含答案)
- 2024国考公务员考试题及行测
- 2025数学步步高大一轮复习讲义人教A版复习讲义含答案
- 精益生产能力成熟度评价标准
- 2023-2024学年河南省焦作市八年级(下)期末数学试卷(含答案)
- 2024CSCO胃肠间质瘤诊疗指南解读
- 泛血管疾病抗栓治疗中国专家共识(2024版)
- 营运能力分析国外研究现状
评论
0/150
提交评论