




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3探索三角形全等的条件第2课时角边角(ASA)或角角边(AAS)
第四章三角形讲授新课当堂练习课堂小结新课导入目录新课导入教学目标教学重点1.探索并正确理解三角形全等的判定方法“ASA”和“AAS”.2.已知两角及其夹边会作三角形.(重点,难点)3.会用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等.学习目标如图,小明不慎将一块三角形玻璃打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?你能说明其中理由吗?321新课导入讲授新课典例精讲归纳总结问题:如果已知一个三角形的两角及一边,那么有几种可能的情况呢?ABCABC图一图二“两角及夹边”“两角和其中一组等角的对边”它们能判定两个三角形全等吗?讲授新课三角形全等的判定(“角边角”)作图探究先任意画出一个△ABC,再画一个△A′B′C′,
使A′B′=AB,∠A
′=∠A,∠B′=∠B
(即使两角和它们的夹边对应相等).把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?ACBACBA′B′C′ED作法:(1)画A'B'=AB;(2)在A'B'的同旁画∠DA'B'=∠A,∠EB'A'=∠B,A'D,B'E相交于点C'.想一想:从中你能发现什么规律?知识要点
“角边角”判定方法文字语言:两角及其夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).几何语言:∠A=∠A′(已知),AB=A′B′(已知),∠B=∠B′(已知),在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(ASA).ABCA′B′C′如图,已知,,线段c,用尺规作△ABC,使∠A=
,∠B=,AB=c.c
已知三角形的两角及其夹边,用尺规作这个三角形知识要点请按照给出的作法作出相应的图形.作法图形
(1)作;AF(2)在射线AF上截取线段AB=c;CDBADFABDF(3)以B为顶点,以BA为一边,作,BE交AD于点C.△ABC就是所求作的三角形.E例1
如图,已知:∠ABC=∠DCB,∠ACB=∠DBC,试说明:△ABC≌△DCB.∠ABC=∠DCB(已知),
BC=CB(公共边),∠ACB=∠DBC(已知),解:在△ABC和△DCB中,∴△ABC≌△DCB(ASA).BCAD
判定方法:两角及其夹边分别相等的两个三角形全等.例2
如图,已知AB=AE,∠1=∠2,∠B=∠E.试说明:BC=ED.要说明BC=ED,需说明它们所在的三角形全等,由于∠B=∠E,AB=AE,因此需说明∠BAC=∠EAD,即需说明∠BAD+∠1=∠BAD+∠2,易知成立.导引:因为∠1=∠2,所以∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD.在△BAC和△EAD中,因为所以△BAC≌△EAD(ASA).所以BC=ED.解:练一练1.如图,AB∥FC,DE=EF,AB=15,CF=8,则BD等于(
)A.8B.7C.6D.5B2.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,试说明:AD=AE.ABCDE分析:证明△ACD≌△ABE,就可以得出AD=AE.解:在△ACD和△ABE中,∠A=∠A(公共角),AC=AB(已知),∠C=∠B
(已知),∴△ACD≌△ABE(ASA),∴AD=AE.3.如图,已知:∠α,∠β=90°,线段a.求作:Rt△ABC,使∠B=∠α,∠C=∠β,BC=2a.(不写作法,保留作图痕迹)根据题意先画出草图,可知原题可转化为已知两角及其夹边,求作三角形的问题.先画线段BC=2a,再以B为顶点,BC为一边,作∠B=∠α,以C为顶点,BC为一边,在CB的同侧,作∠C=∠β,交∠B的另一边于A点.导引:如图所示,△ABC即为所求.解:问题:若三角形的两个内角分别是60°和45°,且45°所对的边为3cm,你能画出这个三角形吗?60°45°讲授新课用“角角边”判定三角形全等60°45°思考:
这里的条件与1中的条件有什么相同点与不同点?你能将它转化为1中的条件吗?75°两角分别相等且其中一组等角的对边相等的两个三角形全等.简写成“角角边”或“AAS”.归纳总结∠A=∠A′(已知),∠B=∠B′
(已知),AC=A′C′(已知),在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(AAS).ABCA′B′C′例3如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.试说明:△ABC≌△DEF.∠B=∠E,
BC=EF,
∠C=∠F.解:在△ABC中,∠A+∠B+∠C=180°.∴△ABC≌△DEF(ASA).∴∠C=180°-∠A-∠B.同理
∠F=180°-∠D-∠E.又∠A=∠D,∠B=∠E,∴∠C=∠F.在△ABC和△DEF中,例4
如图,在四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.试说明:△ABC与△DEC全等.如图,因为∠BCE=∠ACD=90°,所以∠3+∠4=∠4+∠5.所以∠3=∠5.在△ACD中,∠ACD=90°,所以∠2+∠D=90°.因为∠BAE=∠1+∠2=90°,所以∠1=∠D.在△ABC和△DEC中,所以△ABC≌△DEC(AAS).解:4.如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试说明:(1)△BDA≌△AEC;解:(1)∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°.∵AB⊥AC,∴∠BAD+∠CAE=90°,∠ABD=∠CAE.在△BDA和△AEC中,∠ADB=∠CEA=90°,
∠ABD=∠CAE,AB=AC,∴△BDA≌△AEC(AAS).练一练(2)DE=BD+CE.∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE.解:∵△BDA≌△AEC,方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.当堂练习当堂反馈即学即用1.△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,则下列补充的条件中错误的是()A.AC=DFB.BC=EFC.∠A=∠DD.∠C=∠F2.在△ABC与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69°,∠A′=44°,且AC=A′C′,那么这两个三角形()A.一定不全等B.一定全等C.不一定全等D.以上都不对AB当堂练习3.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中一定和△ABC全等的是(
)A.甲、乙B.甲、丙C.乙、丙D.乙C
4.如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的两个三角形是否全等,并说明理由.不全等,因为BC虽然是公共边,但不是对应边.ABCDABCDEF5.如图∠ACB=∠DFE,BC=EF,那么应补充一个条件
,才能使△ABC≌△DEF
(写出一个即可).∠B=∠E或∠A=∠D(ASA)(AAS)AB=DE可以吗?×AB∥DE6.已知:如图,AB⊥BC,AD⊥DC,∠1=∠2,
试说明:AB=AD.ACDB12解:∵
AB⊥BC,AD⊥DC,∴∠B=∠D=90°.
在△ABC和△ADC中,∠1=∠2(已知),∠B=∠D(已证),AC=AC(公共边),∴△ABC≌△ADC(AAS),∴AB=AD.7.〈厦门〉已知:如图,点B,F,C,E在一条直线上,∠A=∠D,AC=DF,且AC∥DF.试说明:△ABC≌△DEF.因为AC∥DF,所以∠ACB=∠DFE.又因为∠A=∠D,AC=DF,所以△ABC≌△DEF(ASA).解:8.已知:如图,△ABC
≌△A′B′C′,AD、A′D′
分别是△ABC
和△A′B′C′的高.试说明AD=A′D′
,并用一句话说出你的发现.ABCDA′B′C′D′解:因为△ABC
≌△A′B′C′,所以AB=A'B'(全等三角形对应边相等),∠ABD=∠A'B'D'(全等三角形对应角相等).因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.在△ABD和△A'B'D'中,∠ADB=∠A'D'B'(已证),∠ABD=∠A'B'D'(已证),AB=AB(已证),所以△AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 台球室装修租赁协议范文
- 人力资源采购居间合同范例
- 业务和管理之间的平衡
- 2024深圳市龙岗区第二职业技术学校工作人员招聘考试及答案
- 2024滦州市卫生职业中等专业学校工作人员招聘考试及答案
- 2024湖南湘江工贸技工学校工作人员招聘考试及答案
- 2024湖南华中交通技工学校工作人员招聘考试及答案
- 2024河北省宁晋县职业技术教育中心工作人员招聘考试及答案
- 跟岗实习教师劳动合同
- 遗产分配协议合同示例
- 小学生合理膳食知识课件
- 人教版(新教材)高中物理选择性必修3第三章 热力学定律章末检测试卷(三)
- 2022年中国联通智家工程师技能大赛题库-上(单选题部分)
- 《职业卫生》专题培训
- 汽修厂安全事故应急预案(4篇)
- DB52T 046-2018 贵州省建筑岩土工程技术规范
- 混凝土安全晨会(班前会)
- (完整版)减数分裂课件
- 人教版英语八年级下册 Unit1-Unit2检测试题
- 2024小学语文教学及说课课件:二年级下册《沙滩上的童话》
- 市政道路监理大纲34368
评论
0/150
提交评论