黑龙江省哈尔滨八中2025届高三春季期中考试数学试题含解析_第1页
黑龙江省哈尔滨八中2025届高三春季期中考试数学试题含解析_第2页
黑龙江省哈尔滨八中2025届高三春季期中考试数学试题含解析_第3页
黑龙江省哈尔滨八中2025届高三春季期中考试数学试题含解析_第4页
黑龙江省哈尔滨八中2025届高三春季期中考试数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨八中2025届高三春季期中考试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是()A.在上是减函数 B.在上是增函数C.不是函数的最小值 D.对于,都有2.已知变量,满足不等式组,则的最小值为()A. B. C. D.3.已知倾斜角为的直线与直线垂直,则()A. B. C. D.4.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A.10 B.9 C.8 D.75.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.6.()A. B. C. D.7.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是()A. B. C. D.8.已知函数,将函数的图象向左平移个单位长度后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.9.直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积为S,则的最小值为A. B. C. D.10.《普通高中数学课程标准(2017版)》提出了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是()A.甲的数据分析素养高于乙B.甲的数学建模素养优于数学抽象素养C.乙的六大素养中逻辑推理最差D.乙的六大素养整体平均水平优于甲11.复数满足,则()A. B. C. D.12.已知等差数列{an},则“a2>a1”是“数列{an}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,若,则__________.14.已知椭圆的离心率是,若以为圆心且与椭圆有公共点的圆的最大半径为,此时椭圆的方程是____.15.在矩形ABCD中,,,点E,F分别为BC,CD边上动点,且满足,则的最大值为________.16.已知,满足约束条件则的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.18.(12分)已知函数(1)若,求证:(2)若,恒有,求实数的取值范围.19.(12分)已知椭圆的上顶点为,圆与轴的正半轴交于点,与有且仅有两个交点且都在轴上,(为坐标原点).(1)求椭圆的方程;(2)已知点,不过点且斜率为的直线与椭圆交于两点,证明:直线与直线的斜率互为相反数.20.(12分)在中,内角的对边分别是,满足条件.(1)求角;(2)若边上的高为,求的长.21.(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)设直线与曲线相交于两点,的顶点也在曲线上运动,求面积的最大值.22.(10分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线和直线的极坐标方程;(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

根据函数对称性和单调性的关系,进行判断即可.【详解】由得关于对称,若关于对称,则函数在上不可能是单调的,故错误的可能是或者是,若错误,则在,上是减函数,在在上是增函数,则为函数的最小值,与矛盾,此时也错误,不满足条件.故错误的是,故选:.本题主要考查函数性质的综合应用,结合对称性和单调性的关系是解决本题的关键.2.B【解析】

先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.3.D【解析】

倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果.【详解】解:因为直线与直线垂直,所以,.又为直线倾斜角,解得.故选:D.本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.4.B【解析】

根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值.【详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知所以因为为线段长度,都大于0,由基本不等式可知,此时所以选B本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题.5.A【解析】

由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.6.D【解析】

利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【详解】由所以,所以原式所以原式故故选:D本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.7.D【解析】

设双曲线的左焦点为,连接,,,设,则,,,和中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为,连接,,,设,则,,,,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.8.A【解析】

化简为,求出它的图象向左平移个单位长度后的图象的函数表达式,利用所得到的图象关于轴对称列方程即可求得,问题得解。【详解】函数可化为:,将函数的图象向左平移个单位长度后,得到函数的图象,又所得到的图象关于轴对称,所以,解得:,即:,又,所以.故选:A.本题主要考查了两角和的正弦公式及三角函数图象的平移、性质等知识,考查转化能力,属于中档题。9.D【解析】

设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值.【详解】设,,联立,得则,则由,得设,则,则点到直线的距离从而.令当时,;当时,故,即的最小值为本题正确选项:本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题.解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.10.D【解析】

根据雷达图对选项逐一分析,由此确定叙述正确的选项.【详解】对于A选项,甲的数据分析分,乙的数据分析分,甲低于乙,故A选项错误.对于B选项,甲的建模素养分,乙的建模素养分,甲低于乙,故B选项错误.对于C选项,乙的六大素养中,逻辑推理分,不是最差,故C选项错误.对于D选项,甲的总得分分,乙的总得分分,所以乙的六大素养整体平均水平优于甲,故D选项正确.故选:D本小题主要考查图表分析和数据处理,属于基础题.11.C【解析】

利用复数模与除法运算即可得到结果.【详解】解:,故选:C本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.12.C【解析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{an}中,若a2>a1,则d>0,即数列{an}为单调递增数列,若数列{an}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{an}为单调递增数列”充分必要条件,故选C.考点:必要条件、充分条件与充要条件的判断.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】

分别代入集合中的元素,求出值,再结合集合中元素的互异性进行取舍可解.【详解】依题意,分别令,,,由集合的互异性,解得,则.故答案为:本题考查集合元素的特性:确定性、互异性、无序性.确定集合中元素,要注意检验集合中的元素是否满足互异性.14.【解析】

根据题意设为椭圆上任意一点,表达出,再根据二次函数的对称轴与求解的关系分析最值求解即可.【详解】因为椭圆的离心率是,,所以,故椭圆方程为.因为以为圆心且与椭圆有公共点的圆的最大半径为,所以椭圆上的点到点的距离的最大值为.设为椭圆上任意一点,则.所以因为的对称轴为.(i)当时,在上单调递增,在上单调递减.此时,解得.(ii)当时,在上单调递减.此时,解得舍去.综上,椭圆方程为.故答案为:本题主要考查了椭圆上的点到定点的距离最值问题,需要根据题意设椭圆上的点,再求出距离,根据二次函数的对称轴与区间的关系分析最值的取值点分类讨论求解.属于中档题.15.【解析】

利用平面直角坐标系,设出点E,F的坐标,由可得,利用数量积运算求得,再利用线性规划的知识求出的最大值.【详解】建立平面直角坐标系,如图(1)所示:设,,,即,又,令,其中,画出图形,如图(2)所示:当直线经过点时,取得最大值.故答案为:本题考查了向量数量积的坐标运算、简单的线性规划问题,解题的关键是建立恰当的坐标系,属于基础题.16.1【解析】

先画出约束条件的可行域,根据平移法判断出最优点,代入目标函数的解析式,易可得到目标函数的最大值.【详解】解:由约束条件得如图所示的三角形区域,由于,则,要求的最大值,则求的截距的最小值,显然当平行直线过点时,取得最大值为:.故答案为:1.本题考查线性规划求最值问题,我们常用几何法求最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)单调递增区间为,单调递减区间为(2)的取值范围是;对应的的值为.【解析】

(1)当时,求的导数可得函数的单调区间;(2)若函数有两个极值点,,且,利用导函数,可得的范围,再表达,构造新函数可求的取值范围,从而可求取到最小值时所对应的的值.【详解】(1)函数由条件得函数的定义域:,当时,,所以:,时,,当时,,当,时,,则函数的单调增区间为:,单调递减区间为:,;(2)由条件得:,,由条件得有两根:,,满足,△,可得:或;由,可得:.,函数的对称轴为,,所以:,;,可得:,,,则:,所以:;所以:,令,,,则,因为:时,,所以:在,上是单调递减,在,上单调递增,因为:,(1),,(1),所以,;即的取值范围是:,;,所以有,则,;所以当取到最小值时所对应的的值为;本题主要考查利用导数研究函数的极值和单调区间问题,考查利用导数求函数的最值,体现了转化的思想方法,属于难题.18.(1)见解析;(2)(﹣∞,0]【解析】

(1)利用导数求x<0时,f(x)的极大值为,即证(2)等价于k≤,x>0,令g(x)=,x>0,再求函数g(x)的最小值得解.【详解】(1)∵函数f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,∴f(x)在(﹣∞,﹣)内递增,在(﹣,0)内递减,在(0,+∞)内递增,∴f(x)的极大值为,∴当x<0时,f(x)≤(2)∵x2e3x≥(k+3)x+2lnx+1,∴k≤,x>0,令g(x)=,x>0,则g′(x),令h(x)=x2(1+3x)e3x+2lnx﹣1,则h(x)在(0,+∞)上单调递增,且x→0+时,h(x)→﹣∞,h(1)=4e3﹣1>0,∴存在x0∈(0,1),使得h(x0)=0,∴当x∈(0,x0)时,g′(x)<0,g(x)单调递减,当x∈(x0,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)在(0,+∞)上的最小值是g(x0)=,∵h(x0)=+2lnx0﹣1=0,所以,令,令所以=1,,∴g(x0)∴实数k的取值范围是(﹣∞,0].本题主要考查利用证明不等式,考查利用导数求最值和解答不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.(1)(2)证明见解析【解析】

(1)根据条件可得,进而得到,即可得到椭圆方程;(2)设直线的方程为,联立,分别表示出直线和直线斜率,相加利用根与系数关系即可得到.【详解】解:(1)圆与有且仅有两个交点且都在轴上,所以,又,,解得,故椭圆的方程为;(2)设直线的方程为,联立,整理可得,则,解得,设点,,则,,所以,故直线与直线的斜率互为相反数.本题考查直线与椭圆的位置关系,涉及椭圆的几何性质,关键是求出椭圆的标准方程,属于中档题.20.(1).(2)【解析】

(1)利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论