下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第九章不等式与不等式组原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!师者,所以传道,授业,解惑也。韩愈漂市一中钱少锋一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。不等号主要包括:>、<、≥、≤、≠。2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。4、解不等式:求不等式的解集的过程,叫做解不等式。5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变。用字母表示为:如果,那么;如果,那么;不等式的性质2:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变。用字母表示为:如果,那么(或);如果,不等号那么(或);不等式的性质3:不等式的两边同时乘以(或除以)同一个负数,的方向改变。用字母表示为:如果,那么(或);如果,那么(或);解不等式想——就是要将不等式逐步转化为xQUOTEa或x<a的形式。(注:①传递性:a>b,b>c,则a>c.②利用不等式的基本性质可以解简单的不等式)(三、)一元一次不等式1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。2、任何一个一元一次不等式都可以化为最简形式:或(a≠0)的形式。、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(特别注意不等号方向改变的问题)。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。(四、)一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。不等式组中含有一个未知数,并且所含未知数的项的次数都是1。2、使不等式组中的每不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的集解(简称不等式组的解)3、不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。4、当任数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。5、一元一次不等式组的解法:解一元一次不等式组的一般步骤:①分别求出这个不等式组中各个不等式的解集;②利数轴表示出各个不等式解集;③找出公共部分;=4\*GB3④用不等式表出这个不等式组的解集如果这些不等式的解集的没有公共部分,则这个不等式组无解(此时也称这个不等式组的解集为空集)。6、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。(五、)一元一次不等式(组)的应用一般方法步骤:(1)审:分析意,找出不等关系;(2)设:设未知数;(3)列:列出不等式组;(4)解:解不式组;(5)检验:从不等式组的解集中找出符合题意的答案;(6)答:写出问题答案。【素材积累】1、一个房产经纪人死后和上帝的对话一个房产经纪人死后,和上帝喝茶。上帝认为他太能说了,会打扰天堂的幽静,于是旧把他打入了地狱。刚过了一个星期,阎王旧满头大汗找上门来说:上帝呀,赶紧把他弄走吧!上帝问:怎么回事?阎王说:地狱的小。2、机会往往伪装成困难美国名校芝加哥大学的一位教授到访北大时曾提到:芝加哥大学对学生的基本要求是做困难的事。因为一个人要想有所成旧,旧必须做那些困难的事。只有做困难的事,才能推动社会发展进步。【素材积累】1、黄鹂方才唱罢,摘村庄的上空,摘树林子里,摘人家的土场上,一群花喜鹊便穿戴着黑白相间的朴素裙裾而闪亮登场,然后,便一天喜气的叽叽喳喳,叽叽喳喳叫起来。2、摘湖的周围有些像薄荷的小草,浓郁时,竟发出泥土的气息!仔细看几朵小花衬
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年个人影视制作合同协议
- 家装销售技巧培训课件
- 工程机械承包合同
- 家装公司市场部培训课件
- 家禽养殖知识培训课件
- 国际空运培训课件模板
- 2024年公司市场营销策划方案
- 信息安全和道德课件
- 医生空气消毒培训
- 冬季攻势扶贫培训课件
- 2026年广东省第一次普通高中学业水平合格性考试化学仿真模拟卷01(全解全析)
- (新教材)2025年部编人教版一年级上册语文全册期末复习课件
- GB/T 26951-2025焊缝无损检测磁粉检测
- 灯展活动安全协议书
- (2026年)压力性损伤的预防和护理课件
- 2026中国医药招标市场发展趋势与前景展望战略研究报告
- 2025年消费者权益保护专员岗位招聘面试参考试题及参考答案
- 药品追溯管理培训试题附答案
- 《国家十五五规划纲要》全文
- 2025年及未来5年中国硅钢市场运行态势及行业发展前景预测报告
- 2025年黑龙江基层法律服务工作者历年真题及答案
评论
0/150
提交评论