




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
金丽衢十二校2024学年高三第二次联考数学试题命题人:永康一中颜熙高雄略审核:浦江中学本卷分选择题和非选择题两部分,考试时间为120分钟,试卷总分为150分,请考生将所有试题的答案涂、写在答题纸上.选择题部分一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,,则()A. B. C. D.【答案】B【解析】【分析】求出集合,利用并集的定义可求得集合.【详解】因为,,则.故选:B.2.已知向量,,,则的值为()A. B. C. D.【答案】C【解析】【分析】求出向量的坐标,利用平面向量数量积的坐标运算可得出关于的等式,解之即可.【详解】因为向量,,则,所以,解得.故选:C.3.已知复数满足,则为()A. B.1 C. D.2【答案】C【解析】【分析】由条件,结合复数除法法则求的代数形式,再由复数的模的公式求结论.【详解】因为,所以,所以.故选:C.4.若圆锥的轴截面是一个边长为的等边三角形,则它的体积为()A. B. C. D.【答案】A【解析】【分析】由条件确定圆锥的底面半径和高,在利用圆锥的体积公式求结论.【详解】因为圆锥的轴截面是一个边长为的等边三角形,所以圆锥的底面半径,高,所以圆锥的体积.故选:A.5.已知函数,则()A. B. C.1 D.e【答案】B【解析】【分析】根据分段函数的解析式求,再求即可.【详解】因为函数,所以,所以.故选:B.6.已知两条相交直线,在平面内,在平面外.设的夹角为,直线与平面所成角为,.则由确定的平面与平面夹角的大小为()A. B. C. D.【答案】B【解析】【分析】设直线的交点为,过直线上异于点的一点作平面的垂线,设垂足为,过点作,垂足为,连接,由已知可得,,根据平面与平面夹角定义可得由确定的平面与平面夹角为,解三角形求夹角大小.【详解】设直线的交点为,过直线上异于点的一点作平面的垂线,设垂足为,过点作,垂足为,连接,如图:因为,所以为直线在平面内的投影,所以直线与平面所成角为,由已知,,因为,,所以,又,,平面,所以直线平面,又平面,所以,即,所以由确定的平面与平面夹角为,在中,,在中,,即,在中,,即,所以,又,,所以,所以,又,所以,所以由确定的平面与平面夹角的大小为.故选:B.7.设抛物线的焦点为,斜率为的直线与抛物线交于两点,若,则的值为()A. B. C. D.【答案】B【解析】【分析】设直线的方程为,联立方程组,结合设而不求法根据关系可求,再求,,,根据余弦定理求结论.【详解】抛物线的焦点的坐标为,准线方程为,设直线的方程为,联立,消可得,方程的判别式,故,设,,不妨设,由已知为方程的根,所以,,设点,在准线上的投影分别为,,因为,所以,故,所以,即为方程的根,故,,所以,,又,由余弦定理,.故选:B8.在中,“”是“为直角”的()A.充分但非必要条件 B.必要但非充分条件C.充要条件 D.既非充分条件也非必要条件【答案】B【解析】【分析】对于必要性,假设
是直角,利用诱导公式将等式转化为关于一个角的三角函数的关系,利用同角三角函数的平方关系可证等式成立,从而证明了必要性;对于非充分性,构造函数,其中.利用导数研究单调性和极值,发现当角足够小时是存在3个零点,每个零点都可以作为角的值,所以的值有三个,存在不是直角的情况,从而否定充分性..【详解】第一步:检验必要性.如果
是直角,那么
.此时,等式
可变为,这是成立的,因此,如果
是直角,等式
成立;第二步:验证充分性.若,构造函数,其中.则,记以,,则,因为,所以,,令,得,令,解得,列表如下:0减增减增,,当时,,故存在使得,而,且,从而函数在上有3个零点,每个零点都可以作为角的值,所以的值有三个,存在不是直角的情况,即存在角不是直角的情况,所以充分性不成立.综上所述,“”是“为直角”必要不充分条件.故选:B.【点睛】思路点睛:本题中非充分性的检验问题,一开始尝试证明充分性,发现不能给出证明,于是开始时尝试举反例来进行逻辑否定,例子常常很难找到,通常可以计算的例子都不会成功的否定,需要极端情况下才能找到适合的例子,这里利用构造函数,利用导数探求是否有多余1个的零点,从而说明原等式对于给定得角,除了它的余角满足等式,探索是否其它得角满足,从而确定是否必须是使得角为直角.二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.设,则下列说法正确的有()A. B.C.该二项式的所有二项式系数之和为64 D.【答案】ACD【解析】【分析】由利用赋值法求,,判断AD,利用二项式展开式通项公式求项的系数判断B,结合二项式展开式二项式系数性质判断C.【详解】因为,取,可得,A正确,取,可得,所以,D正确,二项式的展开式的通项公式为,,取可得,,所以,B错误;二项式的所有二项式系数之和为,C正确;故选:ACD.10.已知函数,,下列说法正确的有()A.的最小正周期为 B.是偶函数C.在区间上单调递减 D.在上的值域为【答案】ABD【解析】【分析】根据正弦型函数的周期公式求函数的周期判断A,化简函数的解析式,根据偶函数定义判断B,求导,利用导数判断函数在区间上单调的单调性,判断C,结合单调性求函数在上的值域,判断D.【详解】因为,所以函数的最小正周期,A正确;因为,所以,所以,函数的定义域为,定义域关于原点对称,,所以函数是偶函数,B正确,,当时,令,可得,设方程的解为,即,,当时,此时,,所以,所以函数在上单调递减,当当时,此时,,所以,所以函数在上单调递增,C错误;因为函数在上单调递减,在上单调递增,其中,,又,,,所以函数在上的值域为,D正确;故选:ABD.11.已知正项等差数列与正项等比数列首项相等,且满足,,则下列说法中正确的有()A.的公比为 B.,使得C.对,数列为递增数列 D.【答案】ACD【解析】【分析】由已知得出,代入可求出的公比,可判断A选项;当时,分析数列的单调性,比较与的大小,可判断B选项;利用数列单调性的定义可判断C选项;求得,结合放缩法可判断D选项.【详解】对于A选项,设等差数列公差为,等比数列的公比为,由已知,则,则,即,所以,,因为,解得,A对;对于B选项,由题意可得,则,,且,所以,,令,则,当时,,即,所以,数列从第三项开始单调递减,当时,,则,故对任意的且,,B错;对于C选项,,令,对任意的,,对任意的,由于,则,则,所以,对,数列为递增数列,C对;对于D选项,,则,D对.故选:ACD.【点睛】关键点点睛:本题的BC选项,关键在于分析对应数列的单调性,结合单调性分析数列各项知的变化,进而结合不等关系求解.非选择题部分三、填空题(本题共3小题,每小题5分,共15分)12.已知椭圆的上顶点与右顶点分别为,若直线的倾斜角为,则的离心率为__________.【答案】【解析】【分析】由椭圆的几何性质可得坐标,结合条件列出方程可得,再由离心率的公式代入计算,即可得到结果.【详解】由题意可得,则直线的斜率为,又直线的倾斜角为,所以,即,所以椭圆的离心率为.故答案为:13.已知函数在处取得极大值,在处取得极小值,若在上的最大值为,则的最大值为__________.【答案】【解析】【分析】利用导数判断函数的单调性,并确定,再结合函数性质求的最大值.【详解】因为,所以,令,可得或,当时,,函数在上单调递增,当时,,函数在上单调递减,当时,,函数在上单调递增,所以当时,取极大值,当时,函数取极小值,所以,,故,又,,,当时,令可得,,所以,故,解得(舍去)或,所以的最大值为.故答案:.14.有张卡片,正面分别写有数字,,,,,,且背面均写有数字.先把这些卡片正面朝上排成一排,且第个位置上的卡片恰好写有数字.然后掷一颗均匀的骰子,若点数为,则将第个位置上的卡片翻面并置于原处.进行上述实验次,发现卡片朝上的数字之和为偶数,在这一条件下,计算骰子恰有一次点数为的概率为__________.【答案】【解析】【分析】根据条件分析试验前后卡片朝上的数字之和的变化情况,设事件次试验后,卡片朝上的数字之和为偶数为,事件三次试验中抛掷骰子所得点数恰有一次为为,表示第次试验中抛掷骰子所得点数为偶数,设表示第次试验中抛掷骰子所得点数为或,设表示第次试验中抛掷骰子所得点数为,,利用事件表示事件,,利用概率公式求概率,结合条件概率公式求结论.【详解】由已知,试验前卡片朝上的数字之和为,数字之和为奇数,若抛掷骰子所得点数为奇数,则试验后卡片朝上的数字之和仍然为奇数,若抛掷骰子所得点数为偶数,则试验后卡片朝上的数字之和变为偶数,所以事件进行次实验后卡片朝上的数字之和为偶数,等于事件三次试验中抛掷骰子所得点数有一次为偶数,余下两次为奇数,或三次试验中抛掷骰子所得点数都为偶数,设事件次试验后,卡片朝上的数字之和为偶数为,设事件三次试验中抛掷骰子所得点数恰有一次为为,记表示第次试验中抛掷骰子所得点数为偶数,,则,设表示第次试验中抛掷骰子所得点数为或,,则,设表示第次试验中抛掷骰子所得点数为,,则,所以,事件表示三次试验中有一次骰子的点数为,另两次的点数为奇数或三次试验中有一次骰子的点数为,另两次的点数为偶数或,所以,所以.故答案为:.【点睛】关键点点睛:本题解决的关键在于确定试验前后卡片上的数字和的变化与抛掷的骰子的点数的关系.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.为了了解高中学生语文与数学成绩之间的联系,从某学校获取了名学生的成绩样本,并将他们的数学和语文成绩整理如表:单位:人数学成绩语文成绩不优秀优秀不优秀优秀(1)依据的独立性检验,能否认为学生的数学成绩与语文成绩有关联?(2)以频率估计概率、从全市高中所有数学不优秀的学生中随机抽取5人,设其中恰有位学生的语文成绩优秀,求随机变量的分布列以及数学期望.附:【答案】(1)依据的独立性检验,可认为学生的数学成绩与语文成绩有关联;(2)分布列见解析,.【解析】【分析】(1)提出零假设学生的数学成绩与语文无关,计算,比较其与临界值的大小,由此确定结论;(2)确定的可能取值,结合二项分布定义判断,根据二项分布概率公式求取各值的概率,由此可得其分布列,再由二项分布期望公式求期望.【小问1详解】零假设为:学生的数学成绩与语文无关,由题,所以依据的独立性检验,推断零假设不成立,即认为学生的数学成绩与语文成绩有关联,此推断犯错误的概率不大于.【小问2详解】由题意可知数学不优秀的学生中语文成绩优秀的概率为,随机变量的取值有,由已知,则,,,,,,所以随机变量的分布列为所以随机变量的数学期望.16.已知等轴双曲线的左右焦点分别为,经过点的直线与的渐近线相交于点,点的横坐标为,是线段的中点,经过点的直线与相交于两点.(1)求双曲线的方程;(2)当的面积为时,求的方程.【答案】(1)(2)或.【解析】【分析】(1)设双曲线方程为,求的坐标,求双曲线的渐近线方程,讨论的位置,求点的坐标,列方程求,由此可得结论;(2)设的方程为,联立方程组,结合设而不求法表示的面积,列方程求可得结论.【小问1详解】因为双曲线为等轴双曲线,故可设双曲线方程为,则,,所以双曲线的渐近线方程为,若点在渐近线上,则,故,代入渐近线,可得,所以双曲线的方程为,若点在渐近线上,则,故,代入渐近线,可得,所以双曲线的方程为,故双曲线方程为.【小问2详解】由题直线不与轴垂直,不妨设的方程为,联立,消可得,由已知,,设,,由已知为方程的根,所以,,所以,又点到直线的距离,所以的面积,所以,所以直线的方程为或.17.如图,在等腰直角三角形中,,,为的中点,分别为边上一点,满足.将分别沿着翻折成,满足在平面的同一侧,面面.(1)证明:共面;(2)在线段上是否存在一点(异于端点),满足平面?若存在,求出点的位置;若不存在,请说明理由;(3)在(2)的情况下,求直线与平面所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)直线与平面所成角的正弦值为.【解析】【分析】(1)延长,相交于点,证明,,再证明,由此可证共面;(2)先证明平面,平面,根据面面平行判定定理证明平面平面,取上靠近的三等分点,根据线面平行判定定理证明平面;(3)作与相交于点,证明平面,根据线面角定义可得就是直线与平面所成角,解三角形求角的正弦值.【小问1详解】延长,相交于点,因为,为的中点,故,又,所以,又,所以,因为平面,平面,所以,而,,所以,故,故共线,且,又,所以,所以共面,【小问2详解】由(1),又平面,平面,所以平面,因为,又平面,平面,所以平面,又,平面,所以平面平面,由(1),取上靠近的三等分点,则,又,所以四边形为平行四边形,所以,平面,,所以平面,【小问3详解】由(2)可得直线与平面所成角即为直线与所成角,作与相交于点.由平面,平面,可得,又,,平面,所以平面,又平面,所以,又,,平面,所以平面,所以直线在平面上的投影为,所以就是直线与平面所成角,在中,,,,所以,所以,在中,,,所以,所以直线与平面所成角的正弦值为.18.已知、,函数.(1)若曲线在处的切线方程为,求的值;(2)若函数在上单调递增,求的取值范围;(3)若对,函数至多有两个零点,求的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)由导数的几何意义可得出,可求出、的值,即可得解;(2)由已知得出对任意的,参变量分离得出,利用导数求出函数的最小值,由此可得出实数的取值范围;(3)对实数的取值进行分类讨论,利用导数分析函数的单调性,结合函数的零点个数可得出实数的取值范围.【小问1详解】因为,则,由题意可得,,解得,,故.【小问2详解】由题意可知,对任意的,,可得,令,则,由可得,由可得,所以,函数的减区间为,增区间为,所以,,因此,实数的取值范围是.【小问3详解】由(2)得,当时,函数在上单调递增,则函数至多一个零点,符合题意;当时,,当时,,且当时,,作图所示:由图可知,存在,使得,且当时,,当时,,所以,函数区间上单调递增,在区间上单调递减,所以,对,函数至多有两个零点,符合题意;当时,函数有两个零点,设两个零点分别为、,当或,,当时,,所以,函数的增区间为、,减区间为,所以,函数的极大值为,极小值为,且当时,;当时,.故当时,即当时,函数有三个零点,不合题意.综上所述,实数的取值范围是.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内蒙古自治区通辽市科左后旗甘旗卡第二高级中学2025届高三下学期入学历史试题含解析
- 吉林建筑大学《泥塑动物》2023-2024学年第二学期期末试卷
- 上海大学《工程荷载与可靠性设计原理》2023-2024学年第二学期期末试卷
- 2025届吉林省长春市高三11月质量监测(一)-政治试题(含答案)
- 2025年中考历史一轮复习之经典好题单元练(二十二)-古代亚非文明(学生版)
- 2025成都市房地产抵押合同示范文本
- 2025绿色蔬菜购销合同
- 班级课堂纪律维护的策略分析计划
- 2025河北省煤炭购销合同范本
- 运用多媒体提升课堂教学效果计划
- (完整版)大学英语六级单词表
- 新疆大学答辩模板课件模板
- 2024届吉林省吉林市高三下学期数学试题模拟试题
- 2022年中医类院感疫情防控试题测试题库含答案
- 道路普通货物运输企业双重预防机制建设指导手册
- 国家经济安全课件
- 医院培训课件:《降低肛肠术后尿潴留发生率》
- 【部编版道德与法治六年级下册】全册测试卷(含答案)
- 食堂家长开放日活动方案及流程
- 人工智能技术应用专业调研报告
- 厦门大学网络教育《经济学原理》专在线测试题库及正确答案
评论
0/150
提交评论