2025届云南省河口县第一中学高考数学试题命题比赛模拟试卷(8)含解析_第1页
2025届云南省河口县第一中学高考数学试题命题比赛模拟试卷(8)含解析_第2页
2025届云南省河口县第一中学高考数学试题命题比赛模拟试卷(8)含解析_第3页
2025届云南省河口县第一中学高考数学试题命题比赛模拟试卷(8)含解析_第4页
2025届云南省河口县第一中学高考数学试题命题比赛模拟试卷(8)含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南省河口县第一中学高考数学试题命题比赛模拟试卷(8)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示程序框图,若判断框内为“”,则输出()A.2 B.10 C.34 D.982.用一个平面去截正方体,则截面不可能是()A.正三角形 B.正方形 C.正五边形 D.正六边形3.己知集合,,则()A. B. C. D.4.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是()A.甲 B.乙 C.丙 D.丁5.设等差数列的前n项和为,若,则()A. B. C.7 D.26.如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,,则()A.1 B. C.2 D.37.已知分别为双曲线的左、右焦点,点是其一条渐近线上一点,且以为直径的圆经过点,若的面积为,则双曲线的离心率为()A. B. C. D.8.斜率为1的直线l与椭圆相交于A、B两点,则的最大值为A.2 B. C. D.9.设向量,满足,,,则的取值范围是A. B.C. D.10.在展开式中的常数项为A.1 B.2 C.3 D.711.执行如图所示的程序框图,如果输入,则输出属于()A. B. C. D.12.已知角的终边与单位圆交于点,则等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.定义在上的奇函数满足,并且当时,则___14.已知在等差数列中,,,前n项和为,则________.15.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_____.16.圆心在曲线上的圆中,存在与直线相切且面积为的圆,则当取最大值时,该圆的标准方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,求不等式的解集;(2)若函数的值域为A,且,求a的取值范围.18.(12分)在平面直角坐标系中,直线的参数方程为(为参数),曲线的极坐标方程为.(Ⅰ)求直线的普通方程及曲线的直角坐标方程;(Ⅱ)设点,直线与曲线相交于,,求的值.19.(12分)已知数列满足,等差数列满足,(1)分别求出,的通项公式;(2)设数列的前n项和为,数列的前n项和为证明:.20.(12分)如图,在平行四边形中,,,现沿对角线将折起,使点A到达点P,点M,N分别在直线,上,且A,B,M,N四点共面.(1)求证:;(2)若平面平面,二面角平面角大小为,求直线与平面所成角的正弦值.21.(12分)如图,四棱锥中,底面ABCD为菱形,平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点.Ⅰ求证:平面PBD;Ⅱ求证:.22.(10分)已知函数.(1)当时,求不等式的解集;(2)若对任意成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:,,,;,,,;,,,;不成立,此时输出.故选:C.本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.2.C【解析】试题分析:画出截面图形如图显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C.考点:平面的基本性质及推论.3.C【解析】

先化简,再求.【详解】因为,又因为,所以,故选:C.本题主要考查一元二次不等式的解法、集合的运算,还考查了运算求解能力,属于基础题.4.D【解析】

根据演绎推理进行判断.【详解】由①②④可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁.故选:D.本题考查演绎推理,掌握演绎推理的定义是解题基础.5.B【解析】

根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果.【详解】因为,所以,所以,所以,故选:B本题主要考查等差数列的性质及前项和公式,属于基础题.6.C【解析】

连接AO,因为O为BC中点,可由平行四边形法则得,再将其用,表示.由M、O、N三点共线可知,其表达式中的系数和,即可求出的值.【详解】连接AO,由O为BC中点可得,,、、三点共线,,.故选:C.本题考查了向量的线性运算,由三点共线求参数的问题,熟记向量的共线定理是关键.属于基础题.7.B【解析】

根据题意,设点在第一象限,求出此坐标,再利用三角形的面积即可得到结论.【详解】由题意,设点在第一象限,双曲线的一条渐近线方程为,所以,,又以为直径的圆经过点,则,即,解得,,所以,,即,即,所以,双曲线的离心率为.故选:B.本题主要考查双曲线的离心率,解决本题的关键在于求出与的关系,属于基础题.8.C【解析】

设出直线的方程,代入椭圆方程中消去y,根据判别式大于0求得t的范围,进而利用弦长公式求得|AB|的表达式,利用t的范围求得|AB|的最大值.【详解】解:设直线l的方程为y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由题意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦长|AB|=4.故选:C.本题主要考查了椭圆的应用,直线与椭圆的关系.常需要把直线与椭圆方程联立,利用韦达定理,判别式找到解决问题的突破口.9.B【解析】

由模长公式求解即可.【详解】,当时取等号,所以本题答案为B.本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.10.D【解析】

求出展开项中的常数项及含的项,问题得解。【详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。11.B【解析】

由题意,框图的作用是求分段函数的值域,求解即得解.【详解】由题意可知,框图的作用是求分段函数的值域,当;当综上:.故选:B本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.12.B【解析】

先由三角函数的定义求出,再由二倍角公式可求.【详解】解:角的终边与单位圆交于点,,故选:B考查三角函数的定义和二倍角公式,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

根据所给表达式,结合奇函数性质,即可确定函数对称轴及周期性,进而由的解析式求得的值.【详解】满足,由函数对称性可知关于对称,且令,代入可得,由奇函数性质可知,所以令,代入可得,所以是以4为周期的周期函数,则当时,所以,所以,故答案为:.本题考查了函数奇偶性与对称性的综合应用,周期函数的判断及应用,属于中档题.14.39【解析】

设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为:39本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.15.-1【解析】

讨论三种情况,a<0时,根据均值不等式得到a(﹣a)≤﹣14,计算等号成立的条件得到答案.【详解】已知关于x的不等式(ax﹣a1﹣4)(x﹣4)>0,①a<0时,[x﹣(a)](x﹣4)<0,其中a0,故解集为(a,4),由于a(﹣a)≤﹣14,当且仅当﹣a,即a=﹣1时取等号,∴a的最大值为﹣4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为﹣1;②a=0时,﹣4(x﹣4)>0,解集为(﹣∞,4),整数解有无穷多,故a=0不符合条件;③a>0时,[x﹣(a)](x﹣4)>0,其中a4,∴故解集为(﹣∞,4)∪(a,+∞),整数解有无穷多,故a>0不符合条件;综上所述,a=﹣1.故答案为:﹣1.本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.16.【解析】

由题意可得圆的面积求出圆的半径,由圆心在曲线上,设圆的圆心坐标,到直线的距离等于半径,再由均值不等式可得的最大值时圆心的坐标,进而求出圆的标准方程.【详解】设圆的半径为,由题意可得,所以,由题意设圆心,由题意可得,由直线与圆相切可得,所以,而,,所以,即,解得,所以的最大值为2,当且仅当时取等号,可得,所以圆心坐标为:,半径为,所以圆的标准方程为:.故答案为:.本题考查直线与圆的位置关系及均值不等式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意验正等号成立的条件.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)或(2)【解析】

(1)分类讨论去绝对值即可;(2)根据条件分a<﹣3和a≥﹣3两种情况,由[﹣2,1]⊆A建立关于a的不等式,然后求出a的取值范围.【详解】(1)当a=﹣1时,f(x)=|x+1|.∵f(x)≤|2x+1|﹣1,∴当x≤﹣1时,原不等式可化为﹣x﹣1≤﹣2x﹣2,∴x≤﹣1;当时,原不等式可化为x+1≤﹣2x﹣2,∴x≤﹣1,此时不等式无解;当时,原不等式可化为x+1≤2x,∴x≥1,综上,原不等式的解集为{x|x≤﹣1或x≥1}.(2)当a<﹣3时,,∴函数g(x)的值域A={x|3+a≤x≤﹣a﹣3}.∵[﹣2,1]⊆A,∴,∴a≤﹣5;当a≥﹣3时,,∴函数g(x)的值域A={x|﹣a﹣3≤x≤3+a}.∵[﹣2,1]⊆A,∴,∴a≥﹣1,综上,a的取值范围为(﹣∞,﹣5]∪[﹣1,+∞).本题考查了绝对值不等式的解法和利用集合间的关于求参数的取值范围,考查了转化思想和分类讨论思想,属于中档题.18.(Ⅰ),;(Ⅱ).【解析】

(Ⅰ)由(为参数)直接消去参数,可得直线的普通方程,把两边同时乘以,结合,可得曲线的直角坐标方程;(Ⅱ)把代入,化为关于的一元二次方程,利用根与系数的关系及参数的几何意义求解.【详解】解:(Ⅰ)由(为参数),消去参数,可得.∵,∴,即.∴曲线的直角坐标方程为;(Ⅱ)把代入,得.设,两点对应的参数分别为,则,.不妨设,,∴.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,明确直线参数方程中参数的几何意义是解题的关键,是中档题.19.(1)(2)证明见解析【解析】

(1)因为,所以,所以,即,又因为,所以数列为等差数列,且公差为1,首项为1,则,即.设的公差为,则,所以(),则(),所以,因此,综上,.(2)设数列的前n项和为,则两式相减得,所以,设则,所以.20.(1)证明见解析;(2)【解析】

(1)根据余弦定理,可得,利用//,可得//平面,然后利用线面平行的性质定理,//,最后可得结果.(2)根据二面角平面角大小为,可知N为的中点,然后利用建系,计算以及平面的一个法向量,利用向量的夹角公式,可得结果.【详解】(1)不妨设,则,在中,,则,因为,所以,因为//,且A、B、M、N四点共面,所以//平面.又平面平面,所以//.而,.(2)因为平面平面,且,所以平面,,因为,所以平面,,因为,平面与平面夹角为,所以,在中,易知N为的中点,如图,建立空间直角坐标系,则,,,,,,,,设平面的一个法向量为,则由,令,得.设与平面所成角为,则.本题考查线面平行的性质定理以及线面角,熟练掌握利用建系的方法解决几何问题,将几何问题代数化,化繁为简,属中档题.21.(1)见解析;(2)见解析.【解析】分析:(1)先证明,再证明FG//平面PBD.(2)先证明平面,再证明BD⊥FG.详解:证明:(1)连结PE,因为G.、F为EC和PC的中点,,又平面,平面,所以平面(II)因为菱形ABCD,所以,又PA⊥面ABCD,平面,所以,因为平面,平面,且,平面,平面,∴BD⊥FG.点睛:(1)本题主要考查空间位置关系的证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论