2025年基于自动驾驶的未来交通与新型电力系统协同报告-2025-03-自动驾驶_第1页
2025年基于自动驾驶的未来交通与新型电力系统协同报告-2025-03-自动驾驶_第2页
2025年基于自动驾驶的未来交通与新型电力系统协同报告-2025-03-自动驾驶_第3页
2025年基于自动驾驶的未来交通与新型电力系统协同报告-2025-03-自动驾驶_第4页
2025年基于自动驾驶的未来交通与新型电力系统协同报告-2025-03-自动驾驶_第5页
已阅读5页,还剩64页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于自动驾驶的未来交通与新型电力系统协同PowerandTransportSynergyDrivenbyAutonomousElectricVehicles

HongcaiZhang

AssistantProfessor

StateKeyLabofInternetofThingsforSmartCity

uM澳大

UniversityofMacau

Oct15,2024

2

Content

Background&motivation

autonomousEVfleet

Routing&pricingofautonomousEVstopromote

renewablegenerationintegration

AutonomousEVsasmobilestoragesystemsto

enhancepowersystemresilience

Summary

EVsaredominatingfuturetransportationsystems

·EVstockhashit21Mandsalessharehasrisento30%inChinabytheendof

2023(over40%in2024)

Transportationnetwork

*Datasource:IEA,"GlobalEVOutlook2023,"2024.

growing

EV

charging

Impactof

load-aHainanexample

·EVchargingloadatmidnighthasreached450MW,witharapidincreaserateof75MW/min,significantlyhigherthanotherpeakperiods

·By2025,chargingloadcouldriseto800-1,000MW,furtherstressingthegridand

compromisingsystemstability

TimeofDay(15-minuteintervals)

Hainanchargingloadheatmap

AveragedailyEVchargingloadprofilesperstationinHainan

EVsasmobileenergystorageforpowersystem

·EVscomeinvarioustypeswithheterogeneousofworkingasmobileenergystoragetointeract

Small

Medium-

Large

Taxi(50-100kWh)

Private(50-100kWh)

Bus(120-300kWh)

Truck(130-180kWh)

DumperTruck(≥300kWh)Emergency(≥300kWh)

characteristics,butallarecapablewithpowersystem

Onemonth's

≈electricityconsumption

foraresident

Twoweeks'

≈electricityconsumption

forafamily

Oneweek's

≈electricityconsumption

forasix-storyapartment

5

Eraofautonomouselectricvehicles

·Globalautonomousvehiclemarketsizemayexceed2200billiondollarsby2023

·Over1kdesignmodelsforelectricverticaltake-offandlandingaircraftworldwidein2024,andalreadycommercializedinthedeliverybusiness

Globalautonomousvehiclemarketsize(billionUSdollars)

NumberofworldeVTOLaircraftdirectoryentries

*Datasource:STATISTA,"Sizeoftheglobalautonomousvehiclemarketin2021and2022,withaforecastthrough2030",2023.

**Datasource:VerticalFlightSociety,"WorldeVTOLAircraftDirectory",2024.

6

7

AutonomousEVswillstrengthpower&transportsynergy

·Fuelcostisthemajoroperationcost(timeisnotexpensive)

·Scheduleddriving&parkingbehaviors(nodrivertomakedecisions)

Operationscostsbreakdownforride-

hailingservices

■ICEV■AEV

AutonomousEVshavestrongermotivationtodetourforcheaperelectricity

Note:fuelefficiency0.32kWh/mileforAEVs,and30mi/gallonforICEVs;gasprice3.3$/gallon;averagedrivingspeed30mile/hour.

ResearchProblems

Planning

HowtooptimizefleetsizeandchargingsystemsforautonomousEVs?

Pricing

Howtodesignrouting&pricingforEVstoboostrenewableintegration?

Scheduling

HowcanautonomousEVsserveasmobilestoragetostrengthengridresilience?

B

Transmissionnetwork

Large

Commercialusers

Distributionrenewables

industrialusers

Centralized

windandPV

generationCharging

stations

Householdusers

Energystorage

Chargingstations

3Charging.3y

Discharging

Electric

cars

Lo-

Electrictrucks

Electricbuses

向◎-◎

Electric

motorcycles

SmartV2Gservices8

Content

Background&motivation

Fleetsizing&chargingsystemplanningfor

autonomousEVfleet

Routing&pricingofautonomousEVstopromote

renewablegenerationintegration

AutonomousEVsasmobilestoragesystemsto

enhancepowersystemresilience

Summary

Fleetsizing&charginginfrastructureplanningforurban-scaleshared-useautonomousEVs

·Problemstatement:Howshared-useautonomousEVcompetewithtraditionalvehicles?

●Objective

◆Fleetsize

◆Charginginfrastructure

●Constraints

◆Mobilitydemands

◆AEVdrivingrange

●Techno-economicanalysis

◆Vehiclebatterycapacity

◆Chargerpower

◆Societaltransportationsystemimpact

·H.Zhang,C.J.R.Sheppard,T.E.Lipman,andS.J.Moura,"JointFleetSizingandChargingSystemPlanningforAutonomousElectricVehicles,"IEEETransactionsonIntelligentTransportationSystems,vol.21,no.11,pp.4725-4738,November2020.DOI:10.1109/TITS.2019.2946152

·T.Zengs,H.Zhang.S.J.Moura,andzM.Shen,"EonomicandEnvronmentalBeneftsofAutomatedElecthicvehicleRide-HaingServicesinNewYorko

City,"ScientitIcReports,vOl.14,p.4180,2024.DOI:10.1038/S41598-024-54495-x

Starttime

EndtimeStarttime

a

b

Methodology-vehicleshareabilitynetwork

·Vehicle-shareabilitynetwork(VSN)*

·Adoptdirectedacyclicgraphtodescriberelationshipsbetweentrips

·Describefleetsizeproblemasaminimumpathcoveringproblem

·Minimumpathcoveringproblemcanbesolvedasamaximummatchingproblem

-

Endtime

Starttime

EndtimeStarttime

Starttimek

Endtime

a

b

g

1

h

m

i

n

f

e

C

C

d

Time

EndtimeStarttime

k

j

h

g

d

Endtime

n

m

i

f

e

Time

DirectedacyclicgraphMinimumpathcover

11

*M.M.Vazifeh,P.Santi,G.Resta,S.H.Strogatz,andC.Ratti,"Addressingtheminimumfleetprobleminon-demandurbanmobility,"Nature,vol.557,no.7706,pp.534-538,2018.

12

Methodology-vehicleshareabilitynetworkwithEVcharging

·Describechargingrangeconstraintsbyidentifyingchargingbehaviorsand

reconstructingvehicleshareabilitynetwork

k

k

:

j

n

n

m

a

m

a

I

b

h

i

g

h

b+g+ch

f

ed

C

f

e

c+d+ch

Currenttime=t

Time

Time

Currenttime=

AnewVSNgraph

chargingevents

Identifyfirst

Methodology-iterativealgorithmwithpolynomialcomplexity

·Aniterativealgorithmwithcomplexity0(TEN2)

Precomputednode-nodehourlytimematrix-NYCTLCdata

Constructroadnetwork,calculateroadODtravelingtime

VSNeraphl

Combinetripsbeforethe

earliestchargingeventforall

othertripchains

Considersecondary

ConstructVehicle-Shareabilitynetwork(directedacyclicgraph)

trafficspeedimpact

becauseofvehicle

automation

Identifytripsand

reconstructvehicle

sharablegraph

Linktravel

timeupdate

Combinetripsbeforethefirstchargingeventforeachtripchainwithachargingevent

ConstructbipartitegraphMaximummatching

Secondary

Addchargingevents

impact

Enumerateeverypathidentifiedupdated

Yes

dispatchtocharge

No,butlargedowntime

Rangeviolated?INo

ConvergenceCriteria?

Yes

13

Outputresults

Experiments&insightsinNewYorkCitycase

·NewYorkCity:Totaltrip485,000trips/day

·Fleetsize13437(real),8100(proposed,40%reduction)

·FleetsizewithEVcharging9,517(15%increasebecauseofdowntime)

Autonomousconventionalvehicle(AV)tleet

operationstatusacrossa7-dayweekInfrastructureplanninginNYC14

Experiments&insightsinNewYorkCitycase

·Longerdrivingrange&higherchargerpowermaynotbeeconomicsolution

Battery

(a)Fleetpurchasecosts.

0

Battery

(c)Investmentcosts

Battery

(b)Infrastructureplacementcosts.

Battery

(d)Operationalcosts

(e)Totalcosts

·AnAEVfleetof(50kW,50kWh)wasthemostcost-effectivesolution

·Largebatteryleadstohighinvestmentandoperationcosts

·Highchargingpowerenhancesvehicle

utilization,buthasmarginaleconomic

benefit

15

Experiments&insightsinNewYorkCitycase

·Automationleadsto45%VMTreduction,and45%reductiononCO2andPM2.5emissions(managedICEVvsunmanagedICEV)

·Electrificationleadsto84%reductiononCO2(EVvsICEV)

·Electrificationandautomationsaveover90%CO2emissions(AEVvsICEV)

Density

CarbonemissionscomparingmanagedorunmanagedAEVandICEV

Density

Emissions(kgPM2.5)

PM2.5emissionscomparingmanagedor

unmanagedAEVandICEV16

Content

Background&motivation

Fleetsizing&chargingsystemplanningfor

autonomousEVfleet

Routing&pricingofautonomousEVstopromoterenewablegenerationintegration

AutonomousEVsasmobilestoragesystemsto

enhancepowersystemresilience

Summary

17

Intercityscenario:RoutingautonomousEVstopromoteintegrationofrenewablegeneration

·Problemstatement:StrategicEVfleetrouting&chargingoncoupledpower&transportationnetworks

oWithpowernetwork:EVsmaydetourtoconsumecheaperelectricity-choose

cost-minimizingpaths

Withoutpowernetwork:EVstrytosave

time-choosetheshortestpaths

·H.Zhang,Z.Hu,andY.Song,"PowerandTransportNexus:RoutingElectricVehiclesGrid,vol.11,no.4,pp.3291-3301,July2020.DOl:10.1109/TSG.2020.2967082|

submittedtoIEEETransactionsonEnergyMarket,PolicyandRegulation,2024.

·L.Pan,H.Zhang,andY.Xu,"OptimalPricingofElectricVehicleChargingonCoupled

Powernetwork

5+

Transportationnetwork

toPromoteRenewablePowerIntegration,"IEEETransactionsonSmartPower-TransportationNetworkbasedonGeneralizedSensitivityAnalysis1"8

Method:optimizationmodel

·OptimizeautonomousEVflowtominimizeoperationalcosts(quadratic)

·Constraints

·ACpowerflow(Secondordercone)

·Coupledconstraints(Linear)

·Drivingrange(expandednetwork)(Linear)

Large-scale(maydriveonanypaths)

·Pathflowconstraints

19

=B₀F,RequireEVsonlychooselimitedpaths

Method:a

column-generation

likealgorithm

·Iterativealgorithmbasedongeneralizedlocationalmarginalprices

Adoptgeneralizednodalelectricitypricesto

estimatetotaldriving

costs(time&electricity)

Initializepathset(shortestpath)foreachODpair

SolvethePEVroutingproblem

Solvepowerflow&calculate

generalizednodalelectricityprices

Identifyminimum-costpathfor

eachODpair

EVcanchangepathtoreducecosts?

No

Outputsolution

Remark:Thescaleoftheidentifiedpathsetismuchsmallerthanarcset;Thealgorithmconvergesinafinitenumberofiterations

Addthenewpathtotheset

Yes

Adoptshortestpath

algorithmtoidentifycost-minimizingpaths

*F.He,Y.Yin,andS.Lawphongpanich,Transp.Res.PartBMethodol.,2014.

20

Experiments&insightsonaninterconnectedpower&transportationnetwork

·Results-distributionofautonomousEV

Trafficflowdistribution(beforerouting)

trafficflow

Trafficflowdistribution(afterrouting)

21

22

Experiments&insightsonaninterconnectedpower&transportationnetwork

·Results-operationcosts(assumeonedriverinonecar)

Significantoperationcostsreduction(-20%)withmilddetour

Powergenerationandpurchase(MWh)Fuelingcosts(k$/h)

CaseElectricitypurchaseConventionalDGRenewableDGElectricityEmissionTotall

10.371.14105.37

110.21

Deourtime8.83

0.447.19

0-22.61

0.00422.56

Chargi3gtime

6.45

6.36

6.36

0.0990.012

0.66

0.66

2.370.29

15.58

15.53

6.050.86

5.45

0.64

94.65

113.98

1

2

3

4

Muchcleanerenergyconsumptionconsideringpower-transportnexus

Case

Electricitypurchase

(MWh)

ConventionalDG(MWh)Bus5

Renewable

DG(MWh)

Averagerenewable

Bus9

Bus10

Bus11

Bus13

powercurtailment(%)

1

10.36

6.05

21.51

24.11

21.75

27.27

21.13

2

1.14

0.86

27.69

30.0

26.28

30.0

5.03

23

Experiments&insightsonaninterconnectedpower&transportationnetwork

·BenefitsofroutingautonomousEVsaremoresignificantwith

·Morecongestedpowernetwork

·Lowerper-unitdrivingtimecost(autonomousvehicles!)

150%per-unittimeco

%

Openquestion:trade-offbetweendeliverytime&operationalcosts?

Intracityscenario:Pricingofurban-scaleautonomousEVcharging

·Problemstatement:Chargingserviceprovidersstrategicallypriceservicesconsideringfactors:

oEVs'routing&chargingbehaviorsareaffectedbybothchargingpricesand

congestionconditions

0EVs'routing&chargingbehaviorsinturnaffecteconomicoperationof

interconnectednetworks

oPricecompetitionexistsincharging

servicemarket

Powernetwork

Transportationnetwork

25

Method:optimizationmodel

·Optimizechargingpricetomaximizechargingservices'profit(Bilinear)

·Constraints:Chargimaxtcan

·Pricingboundconstraints(Linear)

·Transportationflowconservationconstraints(Linear)

·Time-latencyconstraints(Powercone)

·Userequilibriumconstraint(Complementaryconstraints)

0≤f⊥v-u≥0Large-scale(equaltopathsetsize)

PathflowPathcostLowestpathcost

Method:gradientdescentalgorithm

·Decomposetheoriginalproblemintotwoconvexsub-problems(bilinearand

complementaryconstraintsareeliminated)

·Approximatethegradientaxev/aλoftheuserequilibriumsub-problem

·Solvetheproblemiterativelywithgradients

λ

User

equilibrium

a

Proposedmethod

Exponentialtime

complexity

Polynomialtime

complexity

User

lequilibrium

Originalmodel

Pricingproblem

Pricingproblem

27

Experiments-Algorithmicperformanceinlargenetworks

·Proposedmethodisabout50timesNETWORKCONFIGURATION

Network

OD

Node

Arc

FCS

EasternMassachusetts

1113

74

258

41

Winnipeg

1373

1057

2535

97

fasterthanconventionalmethod

·Solutiontimeismoresteadilyincreasing(Polynomialcomplexity)

·Capabletosolveurbanscalenetworks

ALGORITHMPERFORMANCEINWINNIPEG

Method

Pathsetsize

3996567874979200

MP

Profit($)

Solutiontime(s)

GDGSA

Profit($)

Solutiontime(s)

1941.7-2238.2-2270.6_2374.3

172.6375.8432.4493.5

ALGORITHMPERFORMANCEINEASTERNMASSACHUSETTS

set

size

2775

3182

4039

6085

Path

Method

MP

Profit($)

Solutiontime(S)

1410.2216.4

1443.1641.6

1543.51570.1

Profit($)

Solutiontime(s)

1473.9

144.6

1421.3

70.8

1473.6

134.5

1464.1102.9

GDGSA

MP:mathematicalprogramming

GDGSA:proposedmethod“-”:over7200seconds

28

Content

Background&motivation

Fleetsizing&chargingsystemplanningfor

autonomousEVfleet

Routing&pricingofautonomousEVstopromote

renewablegenerationintegration

AutonomousEVsasmobilestoragesystemsto

enhancepowersystemresilience

Summary

AutonomousEVsasmobilestoragesystemstoenhancepowersystemresilience

·Problemstatement:StrategicoperationofautonomousEVsincoupledpower&transportationnetworkstoenhancepowersystemresilience

Time

oPre-hazard:howtomaximizereservesupplyconsideringEVs'spatial-temporalcharacteristics?

oOn-hazard:howtomitigatesystemperformancelossconsideringthedynamiceffectsofhazard?

oPost-hazard:howtorestoresystemperformanceconsideringthedamagedpower&transportationnetworks?

·L.d,."ZIg,.ia,.i,"iiolelreiteiiioll:e13InectedPower-TransportationSystemUnderNaturalg

·L.Kong,H.Zhang,W.Li,H.Bai,andN.Dai,"Spatial-temporalSchedulingofElectricBusFleetinPower-TransportationCoupledNetwork,"IEEETransactionsonTransportationElectrification,vol.9,no.2,pp2969-2982,2023.DOI:10.1109/TTE.2022.3214335

Method:optimization

model

·OptimizeEVandpowernetworktomaximizetherestorationrevenue max[-CA+E(Rpe-cperD]

CAllo=COppo+CChg,pre-Rs

cOper,u=cGen,w+cChg,post-RS,

Pre-allocationcostOperationrevenueOperationcost

·Constraints

·ACpowerflow(Secondordercone)

·EVlocationconstraints(Bilinear)

·EVpowerandenergyconstraints(Integer)

·Hurricane-induceddamagemodel

CumulativedamagemodelofpowertowerPiece-wiseroaddamagemodel30

Experiments-restoredtopologyand

·UtilizingautonomousEVscansignificantly

restoredpowersupplyafterhazards

Restoredpowernetworktopologyundercase1

(proposed)and4(withoutEVs)

powersupply

increasetherestoredareaand

Time/h

Totalsuppliedowerprofilesatbuses23and30underdifferentcases

33

Experiments-revenue

·BenefitofautonomousEVs'participationinrestoration:

·Case1(Proposedmethod)hasasignificantrevenueincrease(369.53%)thanCase4(Benchmark)

·BenefitofspatialschedulingofautonomousEVs:

·Case1(spatial-temporalscheduling)hasmorerestorationrevenue(31.75%)thanCase2(onlytemporalscheduling),whichoffsetsextratripenergycost

Case

Costduringpre-hazardperiod

Costduringrestorationperiod

Costduringpost-hazardperiod

Restoration

revenue

PTCN'stotalrevenue

EVs'

charging

EVs'

opportunity

EVs'

re-dispatchtripenergy

DGs'

generation

EVs'energyrestoration

1

-2,715.85

-6,000.00

-158.12

-4,291.44

-3,533.78

61,059.40

44,518.34L

2

-2,843.49

-6,000.00

N/A

-4,833.00

-3,357.76

46,343.49

29,309.24I

3

-3,546.84

-6,000.00

N/A

-5,895.45

-4,535.41

38,741.24

18,763.54|

4

N/A

N/A

N/A

-6,628.50

N/A

16,110.00

9,481.50

34

Content

Background&motivation

Fleetsizing&chargingsystemplanningfor

autonomousEVfleet

Routing&pricingofautonomousEVstopromote

renewablegenerationintegration

AutonomousEVsasmobilestoragesystemsto

enhancepowersystemresilience

Summary

35

Summary

·Synergybetweenpowerandtransportationsystemsisamajorfeatureof

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论