




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于自动驾驶的未来交通与新型电力系统协同PowerandTransportSynergyDrivenbyAutonomousElectricVehicles
HongcaiZhang
AssistantProfessor
StateKeyLabofInternetofThingsforSmartCity
uM澳大
UniversityofMacau
Oct15,2024
2
Content
Background&motivation
autonomousEVfleet
Routing&pricingofautonomousEVstopromote
renewablegenerationintegration
山
AutonomousEVsasmobilestoragesystemsto
enhancepowersystemresilience
Summary
EVsaredominatingfuturetransportationsystems
·EVstockhashit21Mandsalessharehasrisento30%inChinabytheendof
2023(over40%in2024)
Transportationnetwork
*Datasource:IEA,"GlobalEVOutlook2023,"2024.
growing
EV
charging
Impactof
load-aHainanexample
·EVchargingloadatmidnighthasreached450MW,witharapidincreaserateof75MW/min,significantlyhigherthanotherpeakperiods
·By2025,chargingloadcouldriseto800-1,000MW,furtherstressingthegridand
compromisingsystemstability
TimeofDay(15-minuteintervals)
Hainanchargingloadheatmap
AveragedailyEVchargingloadprofilesperstationinHainan
EVsasmobileenergystorageforpowersystem
·EVscomeinvarioustypeswithheterogeneousofworkingasmobileenergystoragetointeract
Small
Medium-
Large
Taxi(50-100kWh)
Private(50-100kWh)
Bus(120-300kWh)
Truck(130-180kWh)
DumperTruck(≥300kWh)Emergency(≥300kWh)
characteristics,butallarecapablewithpowersystem
Onemonth's
≈electricityconsumption
foraresident
Twoweeks'
≈electricityconsumption
forafamily
Oneweek's
≈electricityconsumption
forasix-storyapartment
5
Eraofautonomouselectricvehicles
·Globalautonomousvehiclemarketsizemayexceed2200billiondollarsby2023
·Over1kdesignmodelsforelectricverticaltake-offandlandingaircraftworldwidein2024,andalreadycommercializedinthedeliverybusiness
Globalautonomousvehiclemarketsize(billionUSdollars)
NumberofworldeVTOLaircraftdirectoryentries
*Datasource:STATISTA,"Sizeoftheglobalautonomousvehiclemarketin2021and2022,withaforecastthrough2030",2023.
**Datasource:VerticalFlightSociety,"WorldeVTOLAircraftDirectory",2024.
6
7
AutonomousEVswillstrengthpower&transportsynergy
·Fuelcostisthemajoroperationcost(timeisnotexpensive)
·Scheduleddriving&parkingbehaviors(nodrivertomakedecisions)
Operationscostsbreakdownforride-
hailingservices
■ICEV■AEV
AutonomousEVshavestrongermotivationtodetourforcheaperelectricity
Note:fuelefficiency0.32kWh/mileforAEVs,and30mi/gallonforICEVs;gasprice3.3$/gallon;averagedrivingspeed30mile/hour.
ResearchProblems
Planning
HowtooptimizefleetsizeandchargingsystemsforautonomousEVs?
Pricing
Howtodesignrouting&pricingforEVstoboostrenewableintegration?
Scheduling
HowcanautonomousEVsserveasmobilestoragetostrengthengridresilience?
凸
B
Transmissionnetwork
Large
曲
田
Commercialusers
Distributionrenewables
industrialusers
Centralized
windandPV
generationCharging
stations
Householdusers
Energystorage
乃
Chargingstations
3Charging.3y
Discharging
Electric
cars
和
Lo-
Electrictrucks
Electricbuses
向◎-◎
Electric
motorcycles
SmartV2Gservices8
Content
Background&motivation
Fleetsizing&chargingsystemplanningfor
autonomousEVfleet
Routing&pricingofautonomousEVstopromote
renewablegenerationintegration
AutonomousEVsasmobilestoragesystemsto
enhancepowersystemresilience
Summary
Fleetsizing&charginginfrastructureplanningforurban-scaleshared-useautonomousEVs
·Problemstatement:Howshared-useautonomousEVcompetewithtraditionalvehicles?
●Objective
◆Fleetsize
◆Charginginfrastructure
●Constraints
◆Mobilitydemands
◆AEVdrivingrange
●Techno-economicanalysis
◆Vehiclebatterycapacity
◆Chargerpower
◆Societaltransportationsystemimpact
·H.Zhang,C.J.R.Sheppard,T.E.Lipman,andS.J.Moura,"JointFleetSizingandChargingSystemPlanningforAutonomousElectricVehicles,"IEEETransactionsonIntelligentTransportationSystems,vol.21,no.11,pp.4725-4738,November2020.DOI:10.1109/TITS.2019.2946152
·T.Zengs,H.Zhang.S.J.Moura,andzM.Shen,"EonomicandEnvronmentalBeneftsofAutomatedElecthicvehicleRide-HaingServicesinNewYorko
City,"ScientitIcReports,vOl.14,p.4180,2024.DOI:10.1038/S41598-024-54495-x
期
Starttime
EndtimeStarttime
a
b
Methodology-vehicleshareabilitynetwork
·Vehicle-shareabilitynetwork(VSN)*
·Adoptdirectedacyclicgraphtodescriberelationshipsbetweentrips
·Describefleetsizeproblemasaminimumpathcoveringproblem
·Minimumpathcoveringproblemcanbesolvedasamaximummatchingproblem
-
Endtime
Starttime
EndtimeStarttime
Starttimek
Endtime
自
a
b
g
1
h
m
i
n
f
e
C
C
d
Time
EndtimeStarttime
k
j
h
g
d
Endtime
n
m
i
f
e
Time
DirectedacyclicgraphMinimumpathcover
11
*M.M.Vazifeh,P.Santi,G.Resta,S.H.Strogatz,andC.Ratti,"Addressingtheminimumfleetprobleminon-demandurbanmobility,"Nature,vol.557,no.7706,pp.534-538,2018.
12
Methodology-vehicleshareabilitynetworkwithEVcharging
·Describechargingrangeconstraintsbyidentifyingchargingbehaviorsand
reconstructingvehicleshareabilitynetwork
k
k
:
j
n
n
m
a
m
a
I
b
h
i
g
h
b+g+ch
f
ed
C
f
e
c+d+ch
Currenttime=t
Time
Time
Currenttime=
AnewVSNgraph
chargingevents
Identifyfirst
Methodology-iterativealgorithmwithpolynomialcomplexity
·Aniterativealgorithmwithcomplexity0(TEN2)
Precomputednode-nodehourlytimematrix-NYCTLCdata
Constructroadnetwork,calculateroadODtravelingtime
VSNeraphl
Combinetripsbeforethe
earliestchargingeventforall
othertripchains
Considersecondary
ConstructVehicle-Shareabilitynetwork(directedacyclicgraph)
trafficspeedimpact
becauseofvehicle
automation
Identifytripsand
reconstructvehicle
sharablegraph
Linktravel
timeupdate
Combinetripsbeforethefirstchargingeventforeachtripchainwithachargingevent
ConstructbipartitegraphMaximummatching
Secondary
Addchargingevents
impact
Enumerateeverypathidentifiedupdated
Yes
dispatchtocharge
No,butlargedowntime
Rangeviolated?INo
ConvergenceCriteria?
Yes
13
Outputresults
Experiments&insightsinNewYorkCitycase
·NewYorkCity:Totaltrip485,000trips/day
·Fleetsize13437(real),8100(proposed,40%reduction)
·FleetsizewithEVcharging9,517(15%increasebecauseofdowntime)
Autonomousconventionalvehicle(AV)tleet
operationstatusacrossa7-dayweekInfrastructureplanninginNYC14
Experiments&insightsinNewYorkCitycase
·Longerdrivingrange&higherchargerpowermaynotbeeconomicsolution
Battery
(a)Fleetpurchasecosts.
0
Battery
(c)Investmentcosts
Battery
(b)Infrastructureplacementcosts.
Battery
(d)Operationalcosts
(e)Totalcosts
·AnAEVfleetof(50kW,50kWh)wasthemostcost-effectivesolution
·Largebatteryleadstohighinvestmentandoperationcosts
·Highchargingpowerenhancesvehicle
utilization,buthasmarginaleconomic
benefit
15
Experiments&insightsinNewYorkCitycase
·Automationleadsto45%VMTreduction,and45%reductiononCO2andPM2.5emissions(managedICEVvsunmanagedICEV)
·Electrificationleadsto84%reductiononCO2(EVvsICEV)
·Electrificationandautomationsaveover90%CO2emissions(AEVvsICEV)
Density
CarbonemissionscomparingmanagedorunmanagedAEVandICEV
Density
Emissions(kgPM2.5)
PM2.5emissionscomparingmanagedor
unmanagedAEVandICEV16
Content
Background&motivation
Fleetsizing&chargingsystemplanningfor
autonomousEVfleet
Routing&pricingofautonomousEVstopromoterenewablegenerationintegration
AutonomousEVsasmobilestoragesystemsto
enhancepowersystemresilience
Summary
17
Intercityscenario:RoutingautonomousEVstopromoteintegrationofrenewablegeneration
·Problemstatement:StrategicEVfleetrouting&chargingoncoupledpower&transportationnetworks
oWithpowernetwork:EVsmaydetourtoconsumecheaperelectricity-choose
cost-minimizingpaths
Withoutpowernetwork:EVstrytosave
time-choosetheshortestpaths
·H.Zhang,Z.Hu,andY.Song,"PowerandTransportNexus:RoutingElectricVehiclesGrid,vol.11,no.4,pp.3291-3301,July2020.DOl:10.1109/TSG.2020.2967082|
submittedtoIEEETransactionsonEnergyMarket,PolicyandRegulation,2024.
·L.Pan,H.Zhang,andY.Xu,"OptimalPricingofElectricVehicleChargingonCoupled
Powernetwork
豐
5+
Transportationnetwork
toPromoteRenewablePowerIntegration,"IEEETransactionsonSmartPower-TransportationNetworkbasedonGeneralizedSensitivityAnalysis1"8
Method:optimizationmodel
·OptimizeautonomousEVflowtominimizeoperationalcosts(quadratic)
·Constraints
·ACpowerflow(Secondordercone)
·Coupledconstraints(Linear)
·Drivingrange(expandednetwork)(Linear)
Large-scale(maydriveonanypaths)
·Pathflowconstraints
19
=B₀F,RequireEVsonlychooselimitedpaths
Method:a
column-generation
likealgorithm
·Iterativealgorithmbasedongeneralizedlocationalmarginalprices
Adoptgeneralizednodalelectricitypricesto
estimatetotaldriving
costs(time&electricity)
Initializepathset(shortestpath)foreachODpair
SolvethePEVroutingproblem
Solvepowerflow&calculate
generalizednodalelectricityprices
Identifyminimum-costpathfor
eachODpair
EVcanchangepathtoreducecosts?
No
Outputsolution
Remark:Thescaleoftheidentifiedpathsetismuchsmallerthanarcset;Thealgorithmconvergesinafinitenumberofiterations
Addthenewpathtotheset
Yes
Adoptshortestpath
algorithmtoidentifycost-minimizingpaths
*F.He,Y.Yin,andS.Lawphongpanich,Transp.Res.PartBMethodol.,2014.
20
Experiments&insightsonaninterconnectedpower&transportationnetwork
·Results-distributionofautonomousEV
Trafficflowdistribution(beforerouting)
trafficflow
Trafficflowdistribution(afterrouting)
21
22
Experiments&insightsonaninterconnectedpower&transportationnetwork
·Results-operationcosts(assumeonedriverinonecar)
Significantoperationcostsreduction(-20%)withmilddetour
Powergenerationandpurchase(MWh)Fuelingcosts(k$/h)
CaseElectricitypurchaseConventionalDGRenewableDGElectricityEmissionTotall
10.371.14105.37
110.21
Deourtime8.83
0.447.19
0-22.61
0.00422.56
Chargi3gtime
6.45
6.36
6.36
0.0990.012
0.66
0.66
2.370.29
15.58
15.53
6.050.86
5.45
0.64
94.65
113.98
1
2
3
4
一
Muchcleanerenergyconsumptionconsideringpower-transportnexus
Case
Electricitypurchase
(MWh)
ConventionalDG(MWh)Bus5
Renewable
DG(MWh)
Averagerenewable
Bus9
Bus10
Bus11
Bus13
powercurtailment(%)
1
10.36
6.05
21.51
24.11
21.75
27.27
21.13
2
1.14
0.86
27.69
30.0
26.28
30.0
5.03
23
Experiments&insightsonaninterconnectedpower&transportationnetwork
·BenefitsofroutingautonomousEVsaremoresignificantwith
·Morecongestedpowernetwork
·Lowerper-unitdrivingtimecost(autonomousvehicles!)
150%per-unittimeco
%
Openquestion:trade-offbetweendeliverytime&operationalcosts?
Intracityscenario:Pricingofurban-scaleautonomousEVcharging
·Problemstatement:Chargingserviceprovidersstrategicallypriceservicesconsideringfactors:
oEVs'routing&chargingbehaviorsareaffectedbybothchargingpricesand
congestionconditions
0EVs'routing&chargingbehaviorsinturnaffecteconomicoperationof
interconnectednetworks
oPricecompetitionexistsincharging
servicemarket
Powernetwork
豐
Transportationnetwork
25
Method:optimizationmodel
·Optimizechargingpricetomaximizechargingservices'profit(Bilinear)
·Constraints:Chargimaxtcan
·Pricingboundconstraints(Linear)
·Transportationflowconservationconstraints(Linear)
·Time-latencyconstraints(Powercone)
·Userequilibriumconstraint(Complementaryconstraints)
0≤f⊥v-u≥0Large-scale(equaltopathsetsize)
PathflowPathcostLowestpathcost
Method:gradientdescentalgorithm
·Decomposetheoriginalproblemintotwoconvexsub-problems(bilinearand
complementaryconstraintsareeliminated)
·Approximatethegradientaxev/aλoftheuserequilibriumsub-problem
·Solvetheproblemiterativelywithgradients
λ
User
equilibrium
a
Proposedmethod
Exponentialtime
complexity
Polynomialtime
complexity
User
lequilibrium
Originalmodel
Pricingproblem
Pricingproblem
27
Experiments-Algorithmicperformanceinlargenetworks
·Proposedmethodisabout50timesNETWORKCONFIGURATION
Network
OD
Node
Arc
FCS
EasternMassachusetts
1113
74
258
41
Winnipeg
1373
1057
2535
97
fasterthanconventionalmethod
·Solutiontimeismoresteadilyincreasing(Polynomialcomplexity)
·Capabletosolveurbanscalenetworks
ALGORITHMPERFORMANCEINWINNIPEG
Method
Pathsetsize
3996567874979200
MP
Profit($)
Solutiontime(s)
GDGSA
Profit($)
Solutiontime(s)
1941.7-2238.2-2270.6_2374.3
172.6375.8432.4493.5
ALGORITHMPERFORMANCEINEASTERNMASSACHUSETTS
set
size
2775
3182
4039
6085
Path
Method
MP
Profit($)
Solutiontime(S)
1410.2216.4
1443.1641.6
1543.51570.1
Profit($)
Solutiontime(s)
1473.9
144.6
1421.3
70.8
1473.6
134.5
1464.1102.9
GDGSA
MP:mathematicalprogramming
GDGSA:proposedmethod“-”:over7200seconds
28
Content
Background&motivation
Fleetsizing&chargingsystemplanningfor
autonomousEVfleet
Routing&pricingofautonomousEVstopromote
renewablegenerationintegration
AutonomousEVsasmobilestoragesystemsto
enhancepowersystemresilience
Summary
AutonomousEVsasmobilestoragesystemstoenhancepowersystemresilience
·Problemstatement:StrategicoperationofautonomousEVsincoupledpower&transportationnetworkstoenhancepowersystemresilience
Time
oPre-hazard:howtomaximizereservesupplyconsideringEVs'spatial-temporalcharacteristics?
oOn-hazard:howtomitigatesystemperformancelossconsideringthedynamiceffectsofhazard?
oPost-hazard:howtorestoresystemperformanceconsideringthedamagedpower&transportationnetworks?
·L.d,."ZIg,.ia,.i,"iiolelreiteiiioll:e13InectedPower-TransportationSystemUnderNaturalg
·L.Kong,H.Zhang,W.Li,H.Bai,andN.Dai,"Spatial-temporalSchedulingofElectricBusFleetinPower-TransportationCoupledNetwork,"IEEETransactionsonTransportationElectrification,vol.9,no.2,pp2969-2982,2023.DOI:10.1109/TTE.2022.3214335
Method:optimization
model
·OptimizeEVandpowernetworktomaximizetherestorationrevenue max[-CA+E(Rpe-cperD]
CAllo=COppo+CChg,pre-Rs
cOper,u=cGen,w+cChg,post-RS,
Pre-allocationcostOperationrevenueOperationcost
·Constraints
·ACpowerflow(Secondordercone)
·EVlocationconstraints(Bilinear)
·EVpowerandenergyconstraints(Integer)
·Hurricane-induceddamagemodel
CumulativedamagemodelofpowertowerPiece-wiseroaddamagemodel30
Experiments-restoredtopologyand
·UtilizingautonomousEVscansignificantly
restoredpowersupplyafterhazards
Restoredpowernetworktopologyundercase1
(proposed)and4(withoutEVs)
powersupply
increasetherestoredareaand
Time/h
Totalsuppliedowerprofilesatbuses23and30underdifferentcases
33
Experiments-revenue
·BenefitofautonomousEVs'participationinrestoration:
·Case1(Proposedmethod)hasasignificantrevenueincrease(369.53%)thanCase4(Benchmark)
·BenefitofspatialschedulingofautonomousEVs:
·Case1(spatial-temporalscheduling)hasmorerestorationrevenue(31.75%)thanCase2(onlytemporalscheduling),whichoffsetsextratripenergycost
Case
Costduringpre-hazardperiod
Costduringrestorationperiod
Costduringpost-hazardperiod
Restoration
revenue
PTCN'stotalrevenue
EVs'
charging
EVs'
opportunity
EVs'
re-dispatchtripenergy
DGs'
generation
EVs'energyrestoration
1
-2,715.85
-6,000.00
-158.12
-4,291.44
-3,533.78
61,059.40
44,518.34L
2
-2,843.49
-6,000.00
N/A
-4,833.00
-3,357.76
46,343.49
29,309.24I
3
-3,546.84
-6,000.00
N/A
-5,895.45
-4,535.41
38,741.24
18,763.54|
4
N/A
N/A
N/A
-6,628.50
N/A
16,110.00
9,481.50
34
Content
Background&motivation
Fleetsizing&chargingsystemplanningfor
autonomousEVfleet
Routing&pricingofautonomousEVstopromote
renewablegenerationintegration
AutonomousEVsasmobilestoragesystemsto
enhancepowersystemresilience
山
Summary
35
Summary
·Synergybetweenpowerandtransportationsystemsisamajorfeatureof
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全媒体文化传播的社会责任试题及答案
- 词汇的灵活运用试题及答案
- 企业贷款融资合同模板
- 二手房屋买卖合同范本
- 别墅毛坯房租赁合同示例
- 专业带压施工合同模板
- 八年级语文下册 第三单元 12《诗经》二首教学实录 新人教版
- 飞天(一)(教学设计)-2024-2025学年人美版(2012)美术四年级上册
- 中学生头发规范
- 二年级品德与生活上册 遇到困难的时候教学实录 泰山版
- 企业模拟经营电子沙盘
- 专升本思政复习指导试题及答案
- 手术安全核查制度
- 2023中华护理学会团体标准-注射相关感染预防与控制
- 2024年北京电子科技职业学院高职单招笔试历年职业技能测验典型例题与考点解析含答案
- 四川省高等教育自学考试毕业生登记表【模板】
- EPC项目设计管理操作指南
- IEC 61000-4-5 电磁兼容测试标准
- DB41∕T 1836-2019 矿山地质环境恢复治理工程施工质量验收规范
- 锡矿选厂生产承包合同
- 企业员工职务犯罪培训ppt课件
评论
0/150
提交评论