




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DisclosureAuthorized
Public
FEBRUARY20252025/142
ENERGY&EXTRACTIVESGLOBALPRACTICE
AKNOWLEDGENOTESERIESFORTHE
Safetyaspectsofhydrogenandits
mainderivatives:Aliteraturereviewforpolicymakers
Thebottomline.ThisLiveWirefocusesonsafetyconcernsassociatedwithhydrogenanditsmainderivatives:ammoniaandmethanol.Afteranexhaustivereviewoftheliteratureand
measuresonhydrogensafety,thestudysummarizedherefoundrobust,well-established
AuthorPublicDisclosureAuthorized
standardsdevelopedbyreputableinstitutions.Thisbriefemphasizesthecriticalimportanceofadheringtothesestandardsandencouragestheirfullimplementationtoensureeffectiveand
consistentsafetypractices.
Inaword…
Hydrogenisthesimplestandmostabundantelementintheuniverse
Sinceitsdiscoveryalmost250yearsagobyHenryCavendishandAntoineLavoisier,hydrogenhasbeenseenasatoolofprogress.Currently,hydrogenisusedinmanydifferentappli-cations,butnotdirectly;instead,mostapplicationsuseitstwomainderivatives,ammoniaandmethanol.
Hydrogenproducedfromrenewablesourcescanprovideenvironmentallyclean,affordable,andsecurefuelforelectricitygeneration,transportation,andothersectors(Tchouvelev2016).Whileitholdsimmensepotentialtorev-olutionizetheenergysector,italsopresentsuniquesafetychallengesthatmustbeaddressedtoensureitisproduced,stored,andutilizedsafely(DOE2016).Widespreadadoptionofhydrogenrequiresunderstandingitspropertiesandtheassociatedsafetyconcerns.
Sincehydrogenisnotfoundinitsfreeforminnature,itmustbeproduced.Cleanhydrogen—producedfromrenewableenergysourcesandfossilfuelswithresponsiblecarboncap-tureandstorage—canplayanimportantroleintheglobalenergytransition,acceleratingprogresstowardglobalcli-mategoals.
Asanenergycarrier,hydrogencanbeusedtostore,move,anddeliverenergy.Derivativechemicalproductswithhighaddedvalue,suchasammoniaormethanol,canalsobeobtainedfromhydrogen.Thesederivativesenableefficientstorageandtransportofhydrogen,makingthemcrucialcomponentsintheshifttowardsustainableenergysystems.Byleveragingthesetechnologies,industriescanreducetheircarbonfootprintandcontributetoamoresustainablefuture.
Thedeploymentofcleanhydrogenisparticularlyimportantfordecarbonizinghard-to-abatesectors,suchassteelpro-ductionandlong-haultransportation.Butasglobaleffortstodevelopcleanhydrogenintensify,itisessentialtoguaran-teethatrisksaremanagedeffectively.
CarmenCondePardavilaisanenergyanalystwiththeEnergySectorManagementAssistanceProgramattheWorldBank
2Safetyaspectsofhydrogenanditsmainderivatives:Aliteraturereviewforpolicymakers
Thisbriefoffersanoverviewofthemainrisksassociatedwithhydrogenanditsprimaryderivatives,ammoniaandmeth-anol.Itaimstoenhancepolicymakersunderstandingofhydrogensafetyandpromotethedevelopmentofsafeandsustainablehydrogenpolicies.Tothisend,itsynthesizescur-rentresearch,identifiespotentialrisks,andoffersactionablerecommendationstoensurethesafeandefficientintegra-tionofhydrogentechnologies.Internationalbestpracticeswillnotbeaddressedsincetherearenocleargloballeadersinhydrogensafety.
Let’sstartwithhydrogen,beforemovingontoammoniaandmethanol.Whatareitschiefpropertiesandsafetyconcerns?
Safeutilizationofhydrogenrequiresmeticulous
managementofthesafetychallengespresentedbyitsuniqueproperties
Hydrogenisacolorless,odorless,andhighlyflammablegasunderstandardconditions.Itisthelightestelement,withamolecularweightofjust2.02gramspermole.Hydrogenswideflammabilityrangeinair(475percentbyvolume),lowignitionenergy(0.02millijoules[mJ]),andhighdiffusivitymeanthatitcaneasilyspreadinandmixwithair.Inaddi-tion,hydrogenburnswithanalmostinvisibleflame,posingchallengesfordetectionandfirefighting(DOE2016).
Amongtheprimaryconcernsishydrogensexplosiveness.Evenminorleakscanquicklyresultintheformationofexplo-sivemixtureswithair,highlightingthecriticalneedforstrin-gentleakdetectionandeffectiveventilationmeasures(DNV2021).
“Cleanhydrogen—producedfromrenewableenergysourcesandfossilfuelswith
responsiblecarboncaptureandstorage—canplayanimportantroleintheglobalenergytransition,acceleratingprogresstoward
globalclimategoals.”
Thestorageandhandlingofhydrogenthusposessignificantchallenges.Hydrogencanbestoredeitherasacompressedgasorinacryogenicliquidstate.Compressedhydrogenstoragerequireshigh-pressuresystemsthatcanwithstandpressuresupto700bars.Alternatively,storinghydrogenasaliquidnecessitatesextremelylowtemperatures,below253°C,demandingadvancedinsulationandcarefulhan-dlingtopreventboil-offandleaks.Bothstoragemethodsrequirerobustcontainmentsolutionstominimizetheriskofleaksandensuresafety(Calabreseetal.2024).
Anothercrucialissueismaterialcompatibility.Hydrogenhasthepotentialtocauseembrittlementincertainmet-als,whichcanleadtothefailureofpipelinesandoftanksandotherstoragevessels.Specialmaterialsandprotectivecoatingsarerequiredtomaintaintheintegrityofhydrogenstorageandtransportsystems(Calabreseetal.2024).
Finally,thedetectionandmonitoringofhydrogenleakspresenttheirownsetofchallenges.Giventhathydrogenisbothodorlessandcolorless,detectingleakswithoutspecial-izedsensorscanbeexceedinglydifficult.Reliablehydrogendetectionsystemsmustthereforebeimplementedattheoutsetofanyprojecttodetectleaksearlyandpreventhaz-ardoussituations.
Fullyrealizinghydrogenspotentialasacleanenergysource,whileensuringthesafetyofpeopleandinfrastructure,requiresaddressingthesesafetyconcernsusingrigorouscontrols,safetyprotocols,andcontinuousmonitoring.
Hydrogenisnomoreorlessdangerousthanotherflam-mablefuels,includinggasolineandnaturalgas.Thesafetyconcernssurroundinghydrogenarenotacauseforalarm,butaresimplydifferentfromthecustomaryconcernssur-roundinggasolineornaturalgas.Infact,someofhydrogensparticularitiesactuallyprovidesafetybenefitscomparedwithgasolineorotherfuels.Someofthemostnotablediffer-encesarelistedbelow(NHA2010).
Hydrogenislighterthanairanddiffusesrapidly.Hydrogenhashighdiffusivity(3.8timesfasterthanthatofnaturalgas);thismeansthat,whenreleased,itdilutesquicklyintoanon-flammableconcentration.Hydrogenrisestwiceasfastasheliumandsixtimesfasterthannaturalgasataspeedof
Safetyaspectsofhydrogenanditsmainderivatives:Aliteraturereviewforpolicymakers3
almost45milesperhour(20m/s).Therefore,unlessaroof,apoorlyventilatedroom,orsomeotherstructurecontainstherisinggas,thelawsofphysicspreventhydrogenfromlingeringnearaleak(ornearpeopleusinghydrogen-fueledequipment).Simplystated,tobecomeafirehazard,hydro-genmustfirstbeconfinedbutconfiningthelightestele-mentintheuniverseisverydifficult.Engineersconsiderthesepropertieswhendesigningstructureswherehydrogenwillbeused.Theirdesignshelphydrogenescapeupandawayfromusersincaseofanunexpectedrelease.
Hydrogenisodorless,colorless,andtasteless,somosthumansenseswillnothelpdetectaleak.Forthatandotherreasons,theindustryoftenuseshydrogensensorstohelpdetectleaksandhasmaintainedahighsafetyrecordusingthesefordecades.Bycomparison,naturalgasisalsoodorless,colorless,andtasteless,buttheindustryaddsasulfur-con-tainingodorant,calledmercaptan,tomakeitdetectablebysmell.However,allknownodorantscontaminatefuelcells(apopularapplicationforhydrogen).Researchersareinvesti-gatingotherpossiblehydrogendetectionmethods:tracers,newodoranttechnologies,advancedsensors,andothers.
Hydrogenflameshavelowradiantheat.Hydrogencom-bustionprimarilyproducesheatandwater.Sinceitproducesnotcarbonbutaheat-absorbingwatervapor,ahydrogenfirehassignificantlylessradiantheatthanahydrocarbonfire.Theheatreleasednearahydrogenflameislow(thoughtheflameitselfisjustashot),meaningthattheriskofsec-ondaryfiresisalsolow.Thisfacthassignificantimplicationsforthepublicandforrescueworkers.
“Tobecomeafirehazard,hydrogenmustfirstbeconfined—butconfiningthelightestelementintheuniverseisverydifficult.”
Combustion.Likeanyflammablefuel,hydrogencancom-bust.However,itsbuoyancy,diffusivity,andsmallmolecularsizemakeitdifficulttocontain,soasituationwhereitmightcombustishardtocreate.Anadequateconcentrationofhydrogen,anignitionsource,andtherightamountofoxi-dizer(likeoxygen)mustallbepresentatthesametimeforahydrogenfiretooccur.Hydrogenhasawideflammabilityrange(475percentinair)andmightrequirequitealowamountofenergytoignite(0.02mJ).However,theenergyrequiredtoigniteitishighatlowconcentrations(below10percent)similartotheenergyrequiredtoignitenaturalgasandgasolineintheirrespectiveflammabilityrangesmak-inghydrogenrealisticallymoredifficulttoignitenearthelowerflammabilitylimit.Ontheotherhand,ifconditionsallowanincreaseofhydrogensconcentrationtowardthestoichiometric(mosteasilyignited)mixtureof29percent(inair),thentheignitionenergydropstoaboutone-fifteenthofthatrequiredtoignitenaturalgas(orone-tenthforgasoline).Table1summarizesthemainpropertiesofwidelyusedfuels.
Explosion.Anexplosioncannotoccurinatankoranycon-tainmentthatstoresonlyhydrogen.Anexplosionrequiresanoxidizerinaspecificconcentration(e.g.,pureoxygeninaconcentrationofatleast10percentorairinaconcentrationof41percent).Hydrogencanbeexplosiveatconcentra-tionsof18.359percent.Whilethisrangeiswide,itisworth
Table1.Comparisonofthepropertiesofwidelyusedfuels
Hydrogen
Ammonia
Gasolinevapor
Naturalgas
Flammabilitylimits(inair)
4–75%
15–28%
1.4–7.6%
5.3–15%
Explosionlimits(inair)
18.3–59.0%
15–28%
1.1–3.3%
5.7–14%
Ignitionenergy(millijoules)
0.02
0.2
0.20
0.29
Flametemperatureinair(ºC)
2,045
1,800
2,197
1,875
Stoichiometricmixture(mosteasilyignitedinair)
29%
15%
2%
9%
Source:OriginalcompilationbasedonNHA(2010),NewJerseyDepartmentofHealth(2016),NationalInstituteforOccupationalSafetyandHealth(2024),andKobayashietal.(2018).
4Safetyaspectsofhydrogenanditsmainderivatives:Aliteraturereviewforpolicymakers
rememberingthatgasolinecanbemorehazardous,sinceitcanexplodeatmuchlowerconcentrations(1.13.3per-cent).Further,thereisverylittlelikelihoodthathydrogenwillexplodeinopenair,becauseofitstendencytorisequickly.Thisistheoppositeofheaviergasessuchaspropaneorgas-olinefumes,whichhoverneartheground,creatingagreaterexplosionrisk.
“Occasionalexplosionsathydrogenrefuelingstationscontributetothepublic’sperceptionofhydrogenasunsafe,thoughtheexplosionriskisnotgreaterthanforothergases.”
Theneedforanoxidizerforahydrogenexplosionmeanstheexplosionriskislowerthancommonlyperceived.Itneverthe-lessremainsasafetyconcernthatneedstobeaddressed.Occasionalexplosionsathydrogenrefuelingstations,forexample,in
GermanyinJune2024
orin
NorwayinJanuary
2024
(Electrive2024),contributetothepublicsperceptionofhydrogenasunsafe,thoughtheexplosionriskisnotgreaterthanforothergases.Butsincehydrogenisarelativelynewindustry,theseincidentscreatesignificantpublicaversion.Implementingmoresecuritymeasuresanddisseminatingriskassessmentsforexample,the
“HydrogenLeakageRisk
AssessmentforHydrogenRefuelingStations,”
publishedintheInternationalJournalofHydrogenEnergyin2023couldhelpimprovehydrogensimage(WangandGao2023).
Asphyxiation.Allgasesexceptoxygencancauseasphyx-iation.However,hydrogensbuoyancyanddiffusivitymeanthatinmostscenarios,itisunlikelytobeconfinedsufficientlyforasphyxiation.
Toxicity/poison.Hydrogenisnontoxicandnonpoisonous.Itwillnotcontaminategroundwater(itisagasundernormalatmosphericconditions),norwillitsreleasepollutetheenvi-ronment.Hydrogendoesnotcreate“fumes.”
Cryogenicburns.Anycryogenicliquid(hydrogenbecomesaliquidbelow-423°F)cancauseseverefreezeburnsuponcontactwithskin.However,thecurrentmethodtokeep
hydrogenultra-coldusesdouble-walled,vacuum-jacketed,superinsulatedliquidhydrogenstoragecontainersthataredesignedtoventhydrogensafelyingaseousformifabreachofeithertheouterortheinnerwallisdetected.Theserobustconstructionandredundantsafetyfeaturesdramaticallyreducethelikelihoodofhumancontact.
Formoreinformationonhydrogenspropertiesandmainsafetyconcerns,thefollowingsourcesmaybeconsulted:
√“
PropertiesandEffectsofHydrogen
”(EIGA2019,chapter4)
√“
HydrogenHasUniquePhysicalPropertiesMakingIt
SignificantlyMoreReactiveWhenComparedtoMethane
”(AccufactsInc.2022,chapter4)
√
HydrogenTechnologiesSafetyGuide
(NREL2015)
√“SafetyAspectsofGreenHydrogenProductiononIndustrialScale”(ISPT2023)
√“
HydrogenSafetyChallenges:AComprehensiveReview
onProduction,Storage,Transport,Utilization,andCFD-
BasedConsequenceandRiskAssessment
”(Calabreseetal.2024)
√
TheHydrogenIncidentandAccidentsDatabase-HIAD2.1
(EuropeanCommission2023c)
√“
Hydrogen:HowtoMeettheSafetyChallenges
”(Dräger2020)
√“RegulatoryFramework,SafetyAspects,andSocialAcceptanceofHydrogenEnergyTechnologies,”chapter6ofScienceandEngineeringofHydrogen-BasedEnergyTechnologies(Tchouvelev,deOliveira,andNeves2018)
√
TheCenterforHydrogenSafety(CHS2024)
,aglobalnon-profitfoundedin2019toprovideguidance,education,andcollaborativeforumsonhydrogensafetyandglobalbestpractices
√
HydrogenSafetyReview
(NETL2023)
√
FundamentalsofHydrogenSafetyEngineeringII
(Molkov2012).
Safetyaspectsofhydrogenanditsmainderivatives:Aliteraturereviewforpolicymakers5
Apartfromtheabovereferences,theEuropeanCommissionJointResearchCentre,throughtheMajorAccidentsHazardsBureauandinparticulartheMinervaPortal,organizedatwo-part
webinaronhydrogenrisks
—thefirstpartinSeptember2023andthesecondinFebruary2024(EuropeanCommission2023a,2024).Itwasacomprehen-sivewebinar;manycountriesparticipated(e.g.,Germany,theNetherlands,Japan,Finland,France,andtheUnitedKingdom).Participantsdiscussedthemostrelevantsafetyissuesintheindustry,revealingdifferentconcernsatthenationalandinternationallevels.ForthepurposeofthisLiveWire,a
EuropeanCommissiondocumentoutliningrelevant
reliablehydrogensafetyresources
isparticularlynoteworthy(EuropeanCommission2023b).
DevelopmentinstitutionssuchastheInter-AmericanDevelopmentBank(IDB)haveconductedstudiesongreenhydrogen’ssafety.“
Environmental,Health,Safety,andSocial
ManagementofGreenHydrogeninLatinAmericaandthe
Caribbean
”waspublishedinMay2023.
Movingontoammonia,whatareitschiefsafetychallenges?
Althoughnomoreorlessdangerousthanotherfuels,ammonia’ssafetyprofileisdistinct
Ammonia(NH₃)isaclear,colorlessgaswithapungentodoratroomtemperatureandunderatmosphericpressure.Undernormalconditions,itishighlysolubleinwaterandformsasolutionknownasammoniumhydroxide(NH₄OH),whichisaweakbase.Forindustrialpurposes,ammoniaistypicallypressurizedandcooledtobestoredandtransportedasaliquidtoincreaseefficiencyandsafety.
AmmoniaistypicallyproducedviatheHaber-Boschprocess,ahigh-temperatureandhigh-pressurecatalyticreactionbetweennitrogen(N₂)andhydrogen(H₂):
N2(g)+3H2(g)=2NH3(g)
Thisprocessisoneofthelargestindustrialusesoffossilfuelsandcontributesapproximately1percentofglobalcarbonemissions.However,ammoniahasanindispensableroleinagriculture,whereitisusedtoproducefertilizerssuchasurea,ammoniumnitrate,andammoniumsulfate.Thevastmajorityofammoniaproduced(about80percent)is
directedtowardfertilizers,while18percentisusedinindus-trialprocesses,andasmallpercentageisusedinrefrigera-tionandair-conditioningsystems.
“Ammoniatoxicityposesaparticularthreattoaquatichabitatsincoralreefs,polar
regions,andmangroves,withpotential
implicationsforfoodchaindynamics.
Effectivespillmanagementiscrucialto
preventcontaminationandprotectaquaticenvironments.”
TheHaber-Boschprocessisoftenconsideredtohavehighenergyandcostrequirements,butthevastmajorityoftheenergyinputs,carbondioxideemissions,capital,andopera-tionalcostsareactuallyrelatedtohydrogenproduction;thesynthesisofammoniafromhydrogenrequiresrelativelysmalladditionaleffortandinvestment.
Manylow-emissionammoniaplantsarenowunderdevelop-mentorhaverecentlybecomeoperational,demonstratingthetechnicalfeasibilityofdecarbonizingammoniaproduc-tion.Low-emissionammoniaplantsconstitutingover22.5milliontonsofcapacityarelikelytobecomeoperationalin2030;morethan293.3milliontonsareunderdevelopment(AmmoniaEnergyAssociation2024b).
Ammoniaisnomoreorlessdangerousthanotherfuels,includinghydrogen,gasoline,andnaturalgas.Itssafetyprofileisquitedifferent,however,withtoxicityandcausticityreplacingflammability.Aswithhydrogen,thesafetycon-cernssurroundingammoniaarenotacauseforalarmastheyarealreadywellknownandwellmanagedinexistingsectors(refrigeration,chemicals,agriculture),butknowledgetransferiscriticaltoensurethatothersectorsadoptammo-niasafely.Averyimportantfutureuseofgreenammoniawillbeasashippingfuel.
Someofthemostnotablerisksrelatedtoammoniaareasfollows.
6Safetyaspectsofhydrogenanditsmainderivatives:Aliteraturereviewforpolicymakers
Exposurerisk.Exposuretoammoniacanbehazardousduetoitscorrosivepropertiesandcausticity.Ammoniacancorrodemetalssuchascopper,brass,zinc,andsomealloys,causingstructuralfailuresinequipmentandcontainmentsystems.Thisposesriskstoindustrialinfrastructureandcanleadtoleaksorspills,whichmaycausefurtherhazards.
Causticityspecificallyrelatestoammonia’simmediateharmfulimpactonlivingorganismsthroughdirectcontact—unliketoxicity,whichinvolveslonger-termsystemiceffects.Ammoniaishighlyalkalineandcancauseseveredamagetoskin,eyes,andmucousmembranesupondirectcontact.Inhalationofammoniavaporscanleadtorespiratorytractirritation,swelling,orevenpermanentdamage,depend-ingonconcentrationlevels.Tomitigatethisrisk,theUSOccupationalSafetyandHealthAdministrationhassetthepermissibleexposurelimitforammoniaat50partspermil-lion(ppm)overaneight-hourworkday,andtheshort-termexposurelimitis35ppmfor15minutes.
Toxicity.Toxicityreferstothepotentialharmfuleffectsofsubstancesonaquaticlife.Whenaspilloccurs,toxicmate-rialscaninfiltratewaterbodies,causingsevereecologicaldamage.Prolongedexposurecandisruptmarineecosys-tems,poisoningfish,plants,andmicroorganisms.AccordingtotheEnvironmentalDefenseFund’s2022report”
Ammonia
atSea:StudyingthePotentialImpactofAmmoniaasa
ShippingFuelonMarineEcosystems
,”toxicityposesapar-ticularthreattoaquatichabitatsincoralreefs,polarregions,andmangroves,withpotentialimplicationsforfoodchaindynamics.Effectivespillmanagementiscrucialtopreventcontaminationandprotectaquaticenvironments.Thisincludesstringentprotocolsforhandlingandcontainment,andemergencyresponsemeasurestominimizetoxicexpo-sureandmitigatelong-termenvironmentalimpacts.
Flammabilityandexplosivepotential.Ammoniaisclas-sifiedasaflammablegas,despiteitsnarrowflammabilitylimits:from15percentto28percentbyvolumeinair.Whenmixedwithair,especiallyathighconcentrations,ammoniacanformexplosivemixtures,posingsignificantrisksinindus-trialsettings.However,ammonia’srelativelyhighauto-igni-tiontemperature(651°C)makesaccidentalignitionlesslikelycomparedwithmorevolatilefuelslikemethaneorhydrogen.
Storageandhandling.Givenitshazards,ammoniamustbestoredandhandledfollowingstringentsafetyprotocols.Storagetanksmustbemadeofmaterialsthatcanresistammonia’scorrosiveeffects.Thesetanksareoftenequippedwithsafetyfeaturessuchaspressurereleasevalves,andtheymustbeinspectedregularlyforleaksorstructuralweaknesses.
Ifaleakoccurs,ammoniacanspreadrapidlyandmustbecontainedandevacuatedimmediately.Facilitieshandlingammoniainlargequantitiesareoftenrequiredtohaveemergencyresponseplans,includingammoniadetectionsystems,personalprotectiveequipmentforworkers,andaccesstomedicalfacilities.
Thefollowingaresomeusefulresourcesonthesafetyofammonia:
√“
SafetyAssessmentofAmmoniaasaTransportFuel
”(RisøNationalLaboratory2005)
√“
HydrogenandAmmoniaInfrastructure:SafetyandRisk
InformationandGuidance
”(Lloyd’sRegister2020)
√“
ReviewofGlobalRegulationsforAnhydrousAmmonia
Production,Use,andStorage
”(InstitutionofChemicalEngineers2016)
√
“AmmoniaSafetyStudy
”(ZeroCarbonShipping2022)
√
AmmoniaSafetyinAmmoniaPlantsandRelatedFacilities
Symposium
,anannualevent,organizedbytheAmericanInstituteofChemicalEngineerssince1955.
Further,numerousorganizationsmaintainammoniasafetystandards;examplesincludetheInternationalInstituteofAll-NaturalRefrigeration,aglobalorganizationdedicatedtopromotingtheuseofnaturalrefrigerantsincoolingandrefrigerationsystems.Theinstituteprovidesresources,stan-dards,andtechnicalguidancetoensurethesafe,efficient,andenvironmentallyfriendlyuseofnaturalrefrigerantssuchasammoniaandcarbondioxideinvariousapplications.ThefollowingstandardscovertheammoniadetectionandalarmrequirementsintheIIARStandards:
Safetyaspectsofhydrogenanditsmainderivatives:Aliteraturereviewforpolicymakers7
√ANSI/IIAR2-2021StandardforDesignofSafetyClosed-CircuitAmmoniaRefrigerationSystems(IIAR2019).
√
ANSI/IIAR6-2019StandardforInspection,Testing,and
MaintenanceofClosed-CircuitAmmoniaRefrigeration
System
(IIAR2021).
TheCompressedGasAssociationdevelopsandmaintainsstandardsrelatedtothesafestorage,handling,andtrans-portationofammonia,particularlyanhydrousammoniausedinindustrialapplications.Thesestandardscovervariousaspectsrelatedtotheuseofammonia(forexample,equip-mentdesign,safetypractices,andregulatorycompliance);helpensureammoniaisusedsafelyinindustrialapplica-tions;andminimizetherisksassociatedwithitstoxicityandflammability.
Ammoniaisgainingattentionasapotentialalterna-tivemarinefuelowingtoitscarbon-freecombustionandrelativelyhighenergydensitycomparedwithotherhydro-gencarriers.Severalreports,includingtheGlobalCentreforMaritimeDecarbonisation’s“
SafetyandOperational
GuidelinesforPilotingAmmoniaBunkeringinSingapore
”(GCMD2023)andtheEuropeanMaritimeSafetyAgency’sreport“
PotentialofAmmoniaasFuelinShipping
”(EMSA2022),highlightammonia’spotentialasashippingfuel,itsbenefits,andtheregulatoryframeworksupportingitsadop-tion.Theyhighlightthesafetychallengesandtheneedforfurthertechnologicalandregulatoryadvancementstosup-portitswidespreaduse.
Severalotherorganizationsarealsoworkingonreportsortoolsregardingtheuseofammoniaasafuel.Forinstance,theCleanMarineFuelsWorkingGroupwithintheWorldPortsSustainabilityProgramhassignedamemorandumofunder-standingwiththeSocietyofGasasaMarineFueltodevelopsafetytoolsforammoniaasafuel(WPSP2024).
TheNetherlands
updateditsPGS-12guidelines
forammo-niastorageandhandling,preparingforincreasedammo-niaimportstothecountry(AmmoniaEnergyAssociation2024d).(TheDCMR(theDutchenvironmentalprotectionagency)haspermittedOCIGlobaltobuilda60,000-tonammoniastoragetankinRotterdam.)Some
keychangesfor
thePGS-12code
intheNetherlandsinclude(1)submergedpumpsforammonialoadingandunloadingoverthetopof
thetank(insteadofonthesideofthetank),and(2)atertiaryconcreteouterwalltominimizetheeffectofanyexternalimpact(Yara2023).
“Thetransitiontoammoniaasamarine
fuelwillrequiresignificantinvestment
ininfrastructure,includingspecialized
bunkeringfacilitiesandretrofittingshipswithammonia-compatibleengines.”
Amainsafetyconcernwithusingammoniaasamarinefuelrevolvesarounditstoxicityandthepotentialforleaksduringbunkering,storage,andon-boardhandling.AGCMD(2023)reportonammoniabunkeringinSingaporeemphasizestheneedforrobustsafetyguidelines,includingthedevelopmentofdouble-walledbunkeringlinesandtankstominimizetheriskofleaks,theimplementationofadvancedventilationandneutralizationsystemstopreventammoniabuild-up,andeffortsensurin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学综合实践活动教科版四年级下册3 我当安全宣传员教案
- 高一自我鉴定800字(16篇)
- 用工劳动合同集锦(15篇)
- 中考30天冲刺计划(4篇)
- 学生评语参考(15篇)
- Unit 2 No Rules,No Order Section B 2a - 2c教学设计-2024-2025学年人教版(2024)七年级英语下册
- 车辆租赁合同模板(19篇)3
- 贯彻STEAM教育理念进行“船的研究”项目式学习
- 家长会心得体会范文(18篇)
- 中学生如何控烟-山东省聊城市高唐县第二实验中学人教部编版七年级道德与法治下册教学设计
- 居间合同协议书范本标准版
- 2024年孝感市(中心)人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- VL3000系列高性能矢量型变频器用户手册上海沃陆电气有限公司
- 极端天气应急
- 家具采购安装方案、家具采购服务方案和计划
- 2023年中国计量科学研究院招聘笔试真题
- 影视产业人才培养-洞察分析
- 儿童系统性红斑狼疮诊断与治疗评析
- 度假酒店的规划与开发
- 《中国文化遗产》课件
- 酒店管理授权委托协议
评论
0/150
提交评论