




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DisclosureAuthorized
Public
FEBRUARY20252025/142
ENERGY&EXTRACTIVESGLOBALPRACTICE
AKNOWLEDGENOTESERIESFORTHE
Safetyaspectsofhydrogenandits
mainderivatives:Aliteraturereviewforpolicymakers
Thebottomline.ThisLiveWirefocusesonsafetyconcernsassociatedwithhydrogenanditsmainderivatives:ammoniaandmethanol.Afteranexhaustivereviewoftheliteratureand
measuresonhydrogensafety,thestudysummarizedherefoundrobust,well-established
AuthorPublicDisclosureAuthorized
standardsdevelopedbyreputableinstitutions.Thisbriefemphasizesthecriticalimportanceofadheringtothesestandardsandencouragestheirfullimplementationtoensureeffectiveand
consistentsafetypractices.
Inaword…
Hydrogenisthesimplestandmostabundantelementintheuniverse
Sinceitsdiscoveryalmost250yearsagobyHenryCavendishandAntoineLavoisier,hydrogenhasbeenseenasatoolofprogress.Currently,hydrogenisusedinmanydifferentappli-cations,butnotdirectly;instead,mostapplicationsuseitstwomainderivatives,ammoniaandmethanol.
Hydrogenproducedfromrenewablesourcescanprovideenvironmentallyclean,affordable,andsecurefuelforelectricitygeneration,transportation,andothersectors(Tchouvelev2016).Whileitholdsimmensepotentialtorev-olutionizetheenergysector,italsopresentsuniquesafetychallengesthatmustbeaddressedtoensureitisproduced,stored,andutilizedsafely(DOE2016).Widespreadadoptionofhydrogenrequiresunderstandingitspropertiesandtheassociatedsafetyconcerns.
Sincehydrogenisnotfoundinitsfreeforminnature,itmustbeproduced.Cleanhydrogen—producedfromrenewableenergysourcesandfossilfuelswithresponsiblecarboncap-tureandstorage—canplayanimportantroleintheglobalenergytransition,acceleratingprogresstowardglobalcli-mategoals.
Asanenergycarrier,hydrogencanbeusedtostore,move,anddeliverenergy.Derivativechemicalproductswithhighaddedvalue,suchasammoniaormethanol,canalsobeobtainedfromhydrogen.Thesederivativesenableefficientstorageandtransportofhydrogen,makingthemcrucialcomponentsintheshifttowardsustainableenergysystems.Byleveragingthesetechnologies,industriescanreducetheircarbonfootprintandcontributetoamoresustainablefuture.
Thedeploymentofcleanhydrogenisparticularlyimportantfordecarbonizinghard-to-abatesectors,suchassteelpro-ductionandlong-haultransportation.Butasglobaleffortstodevelopcleanhydrogenintensify,itisessentialtoguaran-teethatrisksaremanagedeffectively.
CarmenCondePardavilaisanenergyanalystwiththeEnergySectorManagementAssistanceProgramattheWorldBank
2Safetyaspectsofhydrogenanditsmainderivatives:Aliteraturereviewforpolicymakers
Thisbriefoffersanoverviewofthemainrisksassociatedwithhydrogenanditsprimaryderivatives,ammoniaandmeth-anol.Itaimstoenhancepolicymakersunderstandingofhydrogensafetyandpromotethedevelopmentofsafeandsustainablehydrogenpolicies.Tothisend,itsynthesizescur-rentresearch,identifiespotentialrisks,andoffersactionablerecommendationstoensurethesafeandefficientintegra-tionofhydrogentechnologies.Internationalbestpracticeswillnotbeaddressedsincetherearenocleargloballeadersinhydrogensafety.
Let’sstartwithhydrogen,beforemovingontoammoniaandmethanol.Whatareitschiefpropertiesandsafetyconcerns?
Safeutilizationofhydrogenrequiresmeticulous
managementofthesafetychallengespresentedbyitsuniqueproperties
Hydrogenisacolorless,odorless,andhighlyflammablegasunderstandardconditions.Itisthelightestelement,withamolecularweightofjust2.02gramspermole.Hydrogenswideflammabilityrangeinair(475percentbyvolume),lowignitionenergy(0.02millijoules[mJ]),andhighdiffusivitymeanthatitcaneasilyspreadinandmixwithair.Inaddi-tion,hydrogenburnswithanalmostinvisibleflame,posingchallengesfordetectionandfirefighting(DOE2016).
Amongtheprimaryconcernsishydrogensexplosiveness.Evenminorleakscanquicklyresultintheformationofexplo-sivemixtureswithair,highlightingthecriticalneedforstrin-gentleakdetectionandeffectiveventilationmeasures(DNV2021).
“Cleanhydrogen—producedfromrenewableenergysourcesandfossilfuelswith
responsiblecarboncaptureandstorage—canplayanimportantroleintheglobalenergytransition,acceleratingprogresstoward
globalclimategoals.”
Thestorageandhandlingofhydrogenthusposessignificantchallenges.Hydrogencanbestoredeitherasacompressedgasorinacryogenicliquidstate.Compressedhydrogenstoragerequireshigh-pressuresystemsthatcanwithstandpressuresupto700bars.Alternatively,storinghydrogenasaliquidnecessitatesextremelylowtemperatures,below253°C,demandingadvancedinsulationandcarefulhan-dlingtopreventboil-offandleaks.Bothstoragemethodsrequirerobustcontainmentsolutionstominimizetheriskofleaksandensuresafety(Calabreseetal.2024).
Anothercrucialissueismaterialcompatibility.Hydrogenhasthepotentialtocauseembrittlementincertainmet-als,whichcanleadtothefailureofpipelinesandoftanksandotherstoragevessels.Specialmaterialsandprotectivecoatingsarerequiredtomaintaintheintegrityofhydrogenstorageandtransportsystems(Calabreseetal.2024).
Finally,thedetectionandmonitoringofhydrogenleakspresenttheirownsetofchallenges.Giventhathydrogenisbothodorlessandcolorless,detectingleakswithoutspecial-izedsensorscanbeexceedinglydifficult.Reliablehydrogendetectionsystemsmustthereforebeimplementedattheoutsetofanyprojecttodetectleaksearlyandpreventhaz-ardoussituations.
Fullyrealizinghydrogenspotentialasacleanenergysource,whileensuringthesafetyofpeopleandinfrastructure,requiresaddressingthesesafetyconcernsusingrigorouscontrols,safetyprotocols,andcontinuousmonitoring.
Hydrogenisnomoreorlessdangerousthanotherflam-mablefuels,includinggasolineandnaturalgas.Thesafetyconcernssurroundinghydrogenarenotacauseforalarm,butaresimplydifferentfromthecustomaryconcernssur-roundinggasolineornaturalgas.Infact,someofhydrogensparticularitiesactuallyprovidesafetybenefitscomparedwithgasolineorotherfuels.Someofthemostnotablediffer-encesarelistedbelow(NHA2010).
Hydrogenislighterthanairanddiffusesrapidly.Hydrogenhashighdiffusivity(3.8timesfasterthanthatofnaturalgas);thismeansthat,whenreleased,itdilutesquicklyintoanon-flammableconcentration.Hydrogenrisestwiceasfastasheliumandsixtimesfasterthannaturalgasataspeedof
Safetyaspectsofhydrogenanditsmainderivatives:Aliteraturereviewforpolicymakers3
almost45milesperhour(20m/s).Therefore,unlessaroof,apoorlyventilatedroom,orsomeotherstructurecontainstherisinggas,thelawsofphysicspreventhydrogenfromlingeringnearaleak(ornearpeopleusinghydrogen-fueledequipment).Simplystated,tobecomeafirehazard,hydro-genmustfirstbeconfinedbutconfiningthelightestele-mentintheuniverseisverydifficult.Engineersconsiderthesepropertieswhendesigningstructureswherehydrogenwillbeused.Theirdesignshelphydrogenescapeupandawayfromusersincaseofanunexpectedrelease.
Hydrogenisodorless,colorless,andtasteless,somosthumansenseswillnothelpdetectaleak.Forthatandotherreasons,theindustryoftenuseshydrogensensorstohelpdetectleaksandhasmaintainedahighsafetyrecordusingthesefordecades.Bycomparison,naturalgasisalsoodorless,colorless,andtasteless,buttheindustryaddsasulfur-con-tainingodorant,calledmercaptan,tomakeitdetectablebysmell.However,allknownodorantscontaminatefuelcells(apopularapplicationforhydrogen).Researchersareinvesti-gatingotherpossiblehydrogendetectionmethods:tracers,newodoranttechnologies,advancedsensors,andothers.
Hydrogenflameshavelowradiantheat.Hydrogencom-bustionprimarilyproducesheatandwater.Sinceitproducesnotcarbonbutaheat-absorbingwatervapor,ahydrogenfirehassignificantlylessradiantheatthanahydrocarbonfire.Theheatreleasednearahydrogenflameislow(thoughtheflameitselfisjustashot),meaningthattheriskofsec-ondaryfiresisalsolow.Thisfacthassignificantimplicationsforthepublicandforrescueworkers.
“Tobecomeafirehazard,hydrogenmustfirstbeconfined—butconfiningthelightestelementintheuniverseisverydifficult.”
Combustion.Likeanyflammablefuel,hydrogencancom-bust.However,itsbuoyancy,diffusivity,andsmallmolecularsizemakeitdifficulttocontain,soasituationwhereitmightcombustishardtocreate.Anadequateconcentrationofhydrogen,anignitionsource,andtherightamountofoxi-dizer(likeoxygen)mustallbepresentatthesametimeforahydrogenfiretooccur.Hydrogenhasawideflammabilityrange(475percentinair)andmightrequirequitealowamountofenergytoignite(0.02mJ).However,theenergyrequiredtoigniteitishighatlowconcentrations(below10percent)similartotheenergyrequiredtoignitenaturalgasandgasolineintheirrespectiveflammabilityrangesmak-inghydrogenrealisticallymoredifficulttoignitenearthelowerflammabilitylimit.Ontheotherhand,ifconditionsallowanincreaseofhydrogensconcentrationtowardthestoichiometric(mosteasilyignited)mixtureof29percent(inair),thentheignitionenergydropstoaboutone-fifteenthofthatrequiredtoignitenaturalgas(orone-tenthforgasoline).Table1summarizesthemainpropertiesofwidelyusedfuels.
Explosion.Anexplosioncannotoccurinatankoranycon-tainmentthatstoresonlyhydrogen.Anexplosionrequiresanoxidizerinaspecificconcentration(e.g.,pureoxygeninaconcentrationofatleast10percentorairinaconcentrationof41percent).Hydrogencanbeexplosiveatconcentra-tionsof18.359percent.Whilethisrangeiswide,itisworth
Table1.Comparisonofthepropertiesofwidelyusedfuels
Hydrogen
Ammonia
Gasolinevapor
Naturalgas
Flammabilitylimits(inair)
4–75%
15–28%
1.4–7.6%
5.3–15%
Explosionlimits(inair)
18.3–59.0%
15–28%
1.1–3.3%
5.7–14%
Ignitionenergy(millijoules)
0.02
0.2
0.20
0.29
Flametemperatureinair(ºC)
2,045
1,800
2,197
1,875
Stoichiometricmixture(mosteasilyignitedinair)
29%
15%
2%
9%
Source:OriginalcompilationbasedonNHA(2010),NewJerseyDepartmentofHealth(2016),NationalInstituteforOccupationalSafetyandHealth(2024),andKobayashietal.(2018).
4Safetyaspectsofhydrogenanditsmainderivatives:Aliteraturereviewforpolicymakers
rememberingthatgasolinecanbemorehazardous,sinceitcanexplodeatmuchlowerconcentrations(1.13.3per-cent).Further,thereisverylittlelikelihoodthathydrogenwillexplodeinopenair,becauseofitstendencytorisequickly.Thisistheoppositeofheaviergasessuchaspropaneorgas-olinefumes,whichhoverneartheground,creatingagreaterexplosionrisk.
“Occasionalexplosionsathydrogenrefuelingstationscontributetothepublic’sperceptionofhydrogenasunsafe,thoughtheexplosionriskisnotgreaterthanforothergases.”
Theneedforanoxidizerforahydrogenexplosionmeanstheexplosionriskislowerthancommonlyperceived.Itneverthe-lessremainsasafetyconcernthatneedstobeaddressed.Occasionalexplosionsathydrogenrefuelingstations,forexample,in
GermanyinJune2024
orin
NorwayinJanuary
2024
(Electrive2024),contributetothepublicsperceptionofhydrogenasunsafe,thoughtheexplosionriskisnotgreaterthanforothergases.Butsincehydrogenisarelativelynewindustry,theseincidentscreatesignificantpublicaversion.Implementingmoresecuritymeasuresanddisseminatingriskassessmentsforexample,the
“HydrogenLeakageRisk
AssessmentforHydrogenRefuelingStations,”
publishedintheInternationalJournalofHydrogenEnergyin2023couldhelpimprovehydrogensimage(WangandGao2023).
Asphyxiation.Allgasesexceptoxygencancauseasphyx-iation.However,hydrogensbuoyancyanddiffusivitymeanthatinmostscenarios,itisunlikelytobeconfinedsufficientlyforasphyxiation.
Toxicity/poison.Hydrogenisnontoxicandnonpoisonous.Itwillnotcontaminategroundwater(itisagasundernormalatmosphericconditions),norwillitsreleasepollutetheenvi-ronment.Hydrogendoesnotcreate“fumes.”
Cryogenicburns.Anycryogenicliquid(hydrogenbecomesaliquidbelow-423°F)cancauseseverefreezeburnsuponcontactwithskin.However,thecurrentmethodtokeep
hydrogenultra-coldusesdouble-walled,vacuum-jacketed,superinsulatedliquidhydrogenstoragecontainersthataredesignedtoventhydrogensafelyingaseousformifabreachofeithertheouterortheinnerwallisdetected.Theserobustconstructionandredundantsafetyfeaturesdramaticallyreducethelikelihoodofhumancontact.
Formoreinformationonhydrogenspropertiesandmainsafetyconcerns,thefollowingsourcesmaybeconsulted:
√“
PropertiesandEffectsofHydrogen
”(EIGA2019,chapter4)
√“
HydrogenHasUniquePhysicalPropertiesMakingIt
SignificantlyMoreReactiveWhenComparedtoMethane
”(AccufactsInc.2022,chapter4)
√
HydrogenTechnologiesSafetyGuide
(NREL2015)
√“SafetyAspectsofGreenHydrogenProductiononIndustrialScale”(ISPT2023)
√“
HydrogenSafetyChallenges:AComprehensiveReview
onProduction,Storage,Transport,Utilization,andCFD-
BasedConsequenceandRiskAssessment
”(Calabreseetal.2024)
√
TheHydrogenIncidentandAccidentsDatabase-HIAD2.1
(EuropeanCommission2023c)
√“
Hydrogen:HowtoMeettheSafetyChallenges
”(Dräger2020)
√“RegulatoryFramework,SafetyAspects,andSocialAcceptanceofHydrogenEnergyTechnologies,”chapter6ofScienceandEngineeringofHydrogen-BasedEnergyTechnologies(Tchouvelev,deOliveira,andNeves2018)
√
TheCenterforHydrogenSafety(CHS2024)
,aglobalnon-profitfoundedin2019toprovideguidance,education,andcollaborativeforumsonhydrogensafetyandglobalbestpractices
√
HydrogenSafetyReview
(NETL2023)
√
FundamentalsofHydrogenSafetyEngineeringII
(Molkov2012).
Safetyaspectsofhydrogenanditsmainderivatives:Aliteraturereviewforpolicymakers5
Apartfromtheabovereferences,theEuropeanCommissionJointResearchCentre,throughtheMajorAccidentsHazardsBureauandinparticulartheMinervaPortal,organizedatwo-part
webinaronhydrogenrisks
—thefirstpartinSeptember2023andthesecondinFebruary2024(EuropeanCommission2023a,2024).Itwasacomprehen-sivewebinar;manycountriesparticipated(e.g.,Germany,theNetherlands,Japan,Finland,France,andtheUnitedKingdom).Participantsdiscussedthemostrelevantsafetyissuesintheindustry,revealingdifferentconcernsatthenationalandinternationallevels.ForthepurposeofthisLiveWire,a
EuropeanCommissiondocumentoutliningrelevant
reliablehydrogensafetyresources
isparticularlynoteworthy(EuropeanCommission2023b).
DevelopmentinstitutionssuchastheInter-AmericanDevelopmentBank(IDB)haveconductedstudiesongreenhydrogen’ssafety.“
Environmental,Health,Safety,andSocial
ManagementofGreenHydrogeninLatinAmericaandthe
Caribbean
”waspublishedinMay2023.
Movingontoammonia,whatareitschiefsafetychallenges?
Althoughnomoreorlessdangerousthanotherfuels,ammonia’ssafetyprofileisdistinct
Ammonia(NH₃)isaclear,colorlessgaswithapungentodoratroomtemperatureandunderatmosphericpressure.Undernormalconditions,itishighlysolubleinwaterandformsasolutionknownasammoniumhydroxide(NH₄OH),whichisaweakbase.Forindustrialpurposes,ammoniaistypicallypressurizedandcooledtobestoredandtransportedasaliquidtoincreaseefficiencyandsafety.
AmmoniaistypicallyproducedviatheHaber-Boschprocess,ahigh-temperatureandhigh-pressurecatalyticreactionbetweennitrogen(N₂)andhydrogen(H₂):
N2(g)+3H2(g)=2NH3(g)
Thisprocessisoneofthelargestindustrialusesoffossilfuelsandcontributesapproximately1percentofglobalcarbonemissions.However,ammoniahasanindispensableroleinagriculture,whereitisusedtoproducefertilizerssuchasurea,ammoniumnitrate,andammoniumsulfate.Thevastmajorityofammoniaproduced(about80percent)is
directedtowardfertilizers,while18percentisusedinindus-trialprocesses,andasmallpercentageisusedinrefrigera-tionandair-conditioningsystems.
“Ammoniatoxicityposesaparticularthreattoaquatichabitatsincoralreefs,polar
regions,andmangroves,withpotential
implicationsforfoodchaindynamics.
Effectivespillmanagementiscrucialto
preventcontaminationandprotectaquaticenvironments.”
TheHaber-Boschprocessisoftenconsideredtohavehighenergyandcostrequirements,butthevastmajorityoftheenergyinputs,carbondioxideemissions,capital,andopera-tionalcostsareactuallyrelatedtohydrogenproduction;thesynthesisofammoniafromhydrogenrequiresrelativelysmalladditionaleffortandinvestment.
Manylow-emissionammoniaplantsarenowunderdevelop-mentorhaverecentlybecomeoperational,demonstratingthetechnicalfeasibilityofdecarbonizingammoniaproduc-tion.Low-emissionammoniaplantsconstitutingover22.5milliontonsofcapacityarelikelytobecomeoperationalin2030;morethan293.3milliontonsareunderdevelopment(AmmoniaEnergyAssociation2024b).
Ammoniaisnomoreorlessdangerousthanotherfuels,includinghydrogen,gasoline,andnaturalgas.Itssafetyprofileisquitedifferent,however,withtoxicityandcausticityreplacingflammability.Aswithhydrogen,thesafetycon-cernssurroundingammoniaarenotacauseforalarmastheyarealreadywellknownandwellmanagedinexistingsectors(refrigeration,chemicals,agriculture),butknowledgetransferiscriticaltoensurethatothersectorsadoptammo-niasafely.Averyimportantfutureuseofgreenammoniawillbeasashippingfuel.
Someofthemostnotablerisksrelatedtoammoniaareasfollows.
6Safetyaspectsofhydrogenanditsmainderivatives:Aliteraturereviewforpolicymakers
Exposurerisk.Exposuretoammoniacanbehazardousduetoitscorrosivepropertiesandcausticity.Ammoniacancorrodemetalssuchascopper,brass,zinc,andsomealloys,causingstructuralfailuresinequipmentandcontainmentsystems.Thisposesriskstoindustrialinfrastructureandcanleadtoleaksorspills,whichmaycausefurtherhazards.
Causticityspecificallyrelatestoammonia’simmediateharmfulimpactonlivingorganismsthroughdirectcontact—unliketoxicity,whichinvolveslonger-termsystemiceffects.Ammoniaishighlyalkalineandcancauseseveredamagetoskin,eyes,andmucousmembranesupondirectcontact.Inhalationofammoniavaporscanleadtorespiratorytractirritation,swelling,orevenpermanentdamage,depend-ingonconcentrationlevels.Tomitigatethisrisk,theUSOccupationalSafetyandHealthAdministrationhassetthepermissibleexposurelimitforammoniaat50partspermil-lion(ppm)overaneight-hourworkday,andtheshort-termexposurelimitis35ppmfor15minutes.
Toxicity.Toxicityreferstothepotentialharmfuleffectsofsubstancesonaquaticlife.Whenaspilloccurs,toxicmate-rialscaninfiltratewaterbodies,causingsevereecologicaldamage.Prolongedexposurecandisruptmarineecosys-tems,poisoningfish,plants,andmicroorganisms.AccordingtotheEnvironmentalDefenseFund’s2022report”
Ammonia
atSea:StudyingthePotentialImpactofAmmoniaasa
ShippingFuelonMarineEcosystems
,”toxicityposesapar-ticularthreattoaquatichabitatsincoralreefs,polarregions,andmangroves,withpotentialimplicationsforfoodchaindynamics.Effectivespillmanagementiscrucialtopreventcontaminationandprotectaquaticenvironments.Thisincludesstringentprotocolsforhandlingandcontainment,andemergencyresponsemeasurestominimizetoxicexpo-sureandmitigatelong-termenvironmentalimpacts.
Flammabilityandexplosivepotential.Ammoniaisclas-sifiedasaflammablegas,despiteitsnarrowflammabilitylimits:from15percentto28percentbyvolumeinair.Whenmixedwithair,especiallyathighconcentrations,ammoniacanformexplosivemixtures,posingsignificantrisksinindus-trialsettings.However,ammonia’srelativelyhighauto-igni-tiontemperature(651°C)makesaccidentalignitionlesslikelycomparedwithmorevolatilefuelslikemethaneorhydrogen.
Storageandhandling.Givenitshazards,ammoniamustbestoredandhandledfollowingstringentsafetyprotocols.Storagetanksmustbemadeofmaterialsthatcanresistammonia’scorrosiveeffects.Thesetanksareoftenequippedwithsafetyfeaturessuchaspressurereleasevalves,andtheymustbeinspectedregularlyforleaksorstructuralweaknesses.
Ifaleakoccurs,ammoniacanspreadrapidlyandmustbecontainedandevacuatedimmediately.Facilitieshandlingammoniainlargequantitiesareoftenrequiredtohaveemergencyresponseplans,includingammoniadetectionsystems,personalprotectiveequipmentforworkers,andaccesstomedicalfacilities.
Thefollowingaresomeusefulresourcesonthesafetyofammonia:
√“
SafetyAssessmentofAmmoniaasaTransportFuel
”(RisøNationalLaboratory2005)
√“
HydrogenandAmmoniaInfrastructure:SafetyandRisk
InformationandGuidance
”(Lloyd’sRegister2020)
√“
ReviewofGlobalRegulationsforAnhydrousAmmonia
Production,Use,andStorage
”(InstitutionofChemicalEngineers2016)
√
“AmmoniaSafetyStudy
”(ZeroCarbonShipping2022)
√
AmmoniaSafetyinAmmoniaPlantsandRelatedFacilities
Symposium
,anannualevent,organizedbytheAmericanInstituteofChemicalEngineerssince1955.
Further,numerousorganizationsmaintainammoniasafetystandards;examplesincludetheInternationalInstituteofAll-NaturalRefrigeration,aglobalorganizationdedicatedtopromotingtheuseofnaturalrefrigerantsincoolingandrefrigerationsystems.Theinstituteprovidesresources,stan-dards,andtechnicalguidancetoensurethesafe,efficient,andenvironmentallyfriendlyuseofnaturalrefrigerantssuchasammoniaandcarbondioxideinvariousapplications.ThefollowingstandardscovertheammoniadetectionandalarmrequirementsintheIIARStandards:
Safetyaspectsofhydrogenanditsmainderivatives:Aliteraturereviewforpolicymakers7
√ANSI/IIAR2-2021StandardforDesignofSafetyClosed-CircuitAmmoniaRefrigerationSystems(IIAR2019).
√
ANSI/IIAR6-2019StandardforInspection,Testing,and
MaintenanceofClosed-CircuitAmmoniaRefrigeration
System
(IIAR2021).
TheCompressedGasAssociationdevelopsandmaintainsstandardsrelatedtothesafestorage,handling,andtrans-portationofammonia,particularlyanhydrousammoniausedinindustrialapplications.Thesestandardscovervariousaspectsrelatedtotheuseofammonia(forexample,equip-mentdesign,safetypractices,andregulatorycompliance);helpensureammoniaisusedsafelyinindustrialapplica-tions;andminimizetherisksassociatedwithitstoxicityandflammability.
Ammoniaisgainingattentionasapotentialalterna-tivemarinefuelowingtoitscarbon-freecombustionandrelativelyhighenergydensitycomparedwithotherhydro-gencarriers.Severalreports,includingtheGlobalCentreforMaritimeDecarbonisation’s“
SafetyandOperational
GuidelinesforPilotingAmmoniaBunkeringinSingapore
”(GCMD2023)andtheEuropeanMaritimeSafetyAgency’sreport“
PotentialofAmmoniaasFuelinShipping
”(EMSA2022),highlightammonia’spotentialasashippingfuel,itsbenefits,andtheregulatoryframeworksupportingitsadop-tion.Theyhighlightthesafetychallengesandtheneedforfurthertechnologicalandregulatoryadvancementstosup-portitswidespreaduse.
Severalotherorganizationsarealsoworkingonreportsortoolsregardingtheuseofammoniaasafuel.Forinstance,theCleanMarineFuelsWorkingGroupwithintheWorldPortsSustainabilityProgramhassignedamemorandumofunder-standingwiththeSocietyofGasasaMarineFueltodevelopsafetytoolsforammoniaasafuel(WPSP2024).
TheNetherlands
updateditsPGS-12guidelines
forammo-niastorageandhandling,preparingforincreasedammo-niaimportstothecountry(AmmoniaEnergyAssociation2024d).(TheDCMR(theDutchenvironmentalprotectionagency)haspermittedOCIGlobaltobuilda60,000-tonammoniastoragetankinRotterdam.)Some
keychangesfor
thePGS-12code
intheNetherlandsinclude(1)submergedpumpsforammonialoadingandunloadingoverthetopof
thetank(insteadofonthesideofthetank),and(2)atertiaryconcreteouterwalltominimizetheeffectofanyexternalimpact(Yara2023).
“Thetransitiontoammoniaasamarine
fuelwillrequiresignificantinvestment
ininfrastructure,includingspecialized
bunkeringfacilitiesandretrofittingshipswithammonia-compatibleengines.”
Amainsafetyconcernwithusingammoniaasamarinefuelrevolvesarounditstoxicityandthepotentialforleaksduringbunkering,storage,andon-boardhandling.AGCMD(2023)reportonammoniabunkeringinSingaporeemphasizestheneedforrobustsafetyguidelines,includingthedevelopmentofdouble-walledbunkeringlinesandtankstominimizetheriskofleaks,theimplementationofadvancedventilationandneutralizationsystemstopreventammoniabuild-up,andeffortsensurin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 川南地区县域营商环境优化研究
- 课题申报书:面向数字化转型的高校“四新”专业优化策略研究
- 废弃电池回收处理企业制定与实施新质生产力战略研究报告
- 河道底泥环保疏浚装备企业制定与实施新质生产力战略研究报告
- 地铁增值服务行业跨境出海战略研究报告
- 废木料加工板材企业制定与实施新质生产力战略研究报告
- 网络(手机)音乐AI应用行业深度调研及发展战略咨询报告
- 共享单车方案企业制定与实施新质生产力战略研究报告
- 联苯型聚醚酮腈及其复合材料的制备与性能研究
- 被害人危险接受问题研究
- 《雷达原理》课件-3.5.4教学课件:ISAR雷达工作原理
- 新版环氧乙烷安全技术说明书SDS模版
- 衡中同卷2025届高三第一次模拟考试数学试卷含解析
- GB/T 22884-2024皮革牛蓝湿革规范
- 经济学系劳动经济学课程教学大纲
- 液压与气压传动习题及参考答案
- 2024-2030年奶豆腐行业市场现状供需分析及投资评估规划分析研究报告
- 广西靖西绣球文化
- 2024年江苏苏州市(12345)便民服务中心招聘座席代表人员易考易错模拟试题(共500题)试卷后附参考答案
- 2022年山东省职业院校技能大赛高职组导游服务赛项题库
- 北森HRSaaS一体化解决方案-47正式版WN8
评论
0/150
提交评论