




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
WHITEPAPER
PoweringtheFuture
UnlockingBatteryElectricVehicleSustainabilityThroughStrategicBatterySourcing
November2024
byNicoleVoigt|JohannaPütz|NicolasMeyer|NathanNiese|TimmLux|MaraKronauer
BostonConsultingGrouppartnerswithleaders
inbusinessandsocietytotackletheirmost
importantchallengesandcapturetheirgreatest
opportunities.BCGwasthepioneerinbusiness
strategywhenitwasfoundedin1963.Today,
weworkcloselywithclientstoembracea
transformationalapproachaimedatbenefitingallstakeholders—empoweringorganizationstogrow,buildsustainablecompetitiveadvantage,and
drivepositivesocietalimpact.
Ourdiverse,globalteamsbringdeepindustryandfunctionalexpertiseandarangeofperspectives
thatquestionthestatusquoandsparkchange.
BCGdeliverssolutionsthroughleading-edge
managementconsulting,technologyanddesign,andcorporateanddigitalventures.Weworkinauniquelycollaborativemodelacrossthefirmandthroughoutalllevelsoftheclientorganization,
fueledbythegoalofhelpingourclientsthriveandenablingthemtomaketheworldabetterplace.
Content
02Introduction
04Batterytypes:howtheydifferandwhywefocusonLFPandNMC811
08Emissionsdrivers:batteryactivematerialasmajorcontributortomanu-
facturingemissions
10Decarbonizationlevers:
twokeyleverstophysicallydecarbonizeactive
materials
18Implications
fordecision-makers
20AbouttheAuthors
12Measuringtheimpact:
CO₂emissionsinprimary
sourcingandrecycling
15Bringingittogether:
emissionsreduction
potentialdependson
sourcingandbatterytype
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING1
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING2
Introduction
Asnationsstrivetoreduceemissions,transitioningfrominternalcombustionengine(ICE)vehiclestoelectricvehicles(EVs)isessential.
EVsofferclearenvironmentalbenefitsoverICEvehicles,duetotheirloweroperatingemissions,particularlywhenpoweredbyrenewableenergy.
However,theemissionsassociatedwithEVbatteryproductionareanurgentconcern,because
whiletheydonotunderminetheoverallsustainabilityofEVs,theyclearlypresentanopportunityforfurthertransparencyandimprovement.Onlybyunderstandingthesourcesofemissionsin
batteryproductionaswellasbatterymaterialproductioncandecision-makersexplorewaysto
reducethem.
Ourfocusisontractionbatteries,whichpowerthevehicle'selectricmotorandareoneofthelargestcontributorstoemissionsinEVproduction.Emissionssourcedfromraw(battery)materialsforthemaccountformorethanathirdofthetotalCO₂equivalent(CO₂e)ofanaverageBatteryElectricVehi-cle(BEV).Inaddition,theCO₂eemissionsofaBEVarenearlydoublethoseofanICEvehicleduetothehigherraw-materialrequirements,basedontheaveragebatteryproductioninAsia,nottaking
greengridimpactintoconsideration.Becausethechoicesofrawbatterymaterials—includingtheirextractionandprocessing—occurearlyinthesupplychain,beforetheproductreachesthemanufac-turer,thesedecisionshaveasizeableimpactonscope3upstreamemissions.
Exhibit1|Productionemissiondependingonbatterytype
BatteryActiveMaterials(BAM)
ShareofCO2eemissions
ICE
SteelAlu
tCO2
Cu
Other
BEV
16%
LithiumGraphiteIron
phosphate
19%
6%
Lithium
14%
Cobalt
ManganeseNickel
50%
Graphite
Battery
ShareofCO2eemissions
Non-activematerials
Assembly
Non-activematerials
Assembly
Vehicle
5%
45%1.750%
16%9%
9.1
tCO2
ShareofCO2eemissions
NMC
811
25%
1%
Battery
60%(13.6)
Battery
27%
(4.6)
66%
(9.1)
BAM
BAM
16.8
tCO2
4.6
tCO2
13.6
tCO2
22.5tCO2
42%8.2
LFP
37%
32%
39%
29%
15%
24%
20%
20%
12%
8%
6%
5%
Note:Outsideinview
Source:BCGanalysis
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING3
Thus,ateverystopalongthesupplychain—frommaterialsminersandproducerstometaland
batteryrecyclers,batterymanufacturers,andEVmakers—companiesmustfocusonunderstand-ingtheemissions,thesupply-demandprofileandtherelativecostprofileofdifferentsourcing
optionstounderstandthetradeoffsandsetuptheirsupplychainsaccordinglyandleveragebothgreenprimarysourcingandrecycling.Ensuringaccesstosupplyfromlow-emissionsproduction
routes,expandingrecyclingfacilities,andsecuringsecondarymaterialssuchasend-of-life(EOL)
batteriesareallcriticaltolong-termsustainabilityandmaintainingacompetitiveadvantage.By
balancingbothrecyclingandsustainableprimarysourcingtomeetfuturedemandwhileminimiz-ingenvironmentalimpact,companiescansignificantlyreducetheircarbonfootprintandcontrib-utetoamoresustainablefuture.
Thefollowingparagraphsbrieflyhighlightthispaper'skeyinsights:
•Batterytypes:Wefocusonthetwomostcommonbatterytypes,NMC811andLFP,namedforthe8:1:1ratioofnickel,manganeseandcobaltusedinthecathodeandtheuseoflithium,iron,andphosphate,respectively.NMCbatteriestypicallyallowforfasterchargingandgreaterrangebystoringmoreenergyinasmallerspace,buttheyarecostlierandhavehighermanufacturingemissionsthanLFPbatteries.ThelowerenergydensityofLFPbatteriesmeanstheyweighmoreforthesamedistance,andthereforeBEVsusingLFPbatterieshavealowerrangecomparedtothosewithNMCs.
•Emissionsdrivers:Batteryactivematerials(BAM),suchasnickel,manganese,cobalt,lithiumandgraphite,storeandreleaseenergyinabattery—theyarethekeytechnologycomponent
ofthebattery.ForNMCbatteries,thesematerialsareresponsiblefor60–70%ofthetotalCO₂eproductionemissionsperkWh,comparedto35%forLFPbatteries.WhiledecarbonizingBAMiscrucialtoreducingemissionswithoutcompromisingbatteryperformance,decarbonizingothermaterials,giventheirconsiderableshareparticularlyinLFPbatteries,mustalsobeconsidered.
•Decarbonizationlevers:WeconsidertwokeyleverstodecarbonizeBAM:primary(sourcing
greenprimarymaterials)andsecondary(recycling).Greenbatteryproductionrequiresboth,astheavailabilityofgreenprimaryandsecondarymaterialsandcapacitymaybelimitedinthefuture.
•Impactofsourcinglever("primarylever"):GreensourcingofBAMcansignificantlyre-
duceemissions.ForNMCbatteries,themostemission-intensivesourcingmethods(grey/blacksourcing)produceabout180kgCO₂eperkWh,versus~70kgCO₂eperkWhforgreensourcing,areductionofabout60%.ForLFPbatteries,usinggrey/blackmaterialscreatesapproximately
85kgCO₂eperkWh,versusabout30%to~60kgCO₂eperkWhforgreensourcing.Forindi-
vidualmaterials,emissionsreductionsof>90%arepossiblecomparedtogrey/blacksourcing.WhileBAM'sprimaryemissionsreductionpotentialissignificant,thelimitedsupplyofgreenmaterialsandintensecompetitionforthemmakereducinggraymaterialemissionsbyimple-mentingESG-compliantstrategiesessential—thoughthiswillbemoreachievableforcertaingraysourcesthanothers,giventhebroadrangeofgraysourcingavailable.
•Impactofrecyclinglever("secondarylever"):RecyclingisthelowestCO₂eoptionforsome
BAMmaterialsandplaysakeyroleinemissionsreduction,thoughnotalwaysmatchingthereduc-tionpossiblewithsustainableprimarysourcing.Whileexpectedtocontributeonly10%–20%of
totalBAMsupplyby2030,thescarcityofgreenprimaryandsecondaryBAMmakesrecyclinga
necessity.Inaddition,itavoidsmining-relatedconcerns,helpsmeetrecyclingtargetslikethosesetbytheEuropeanUnion,andreducessupply-chainrisks.Comparedtogrey/blacksourcing,which
resultsin~180kgCO₂perkWhforNMC811batteriesand~85kgCO₂perkWhforLFPbatteries,
recyclingcanreduceemissionsbyupto~50%forNMC811andupto~25%forLFP.Newerrecyclingtechnologiescurrentlyinindustrializationstagepromiseafurtheremissionreductionpotential.
CO2e
Toexaminethecarbonfootprintofvehicles,weuseCO₂equivalent(CO₂e)asastandardunittomeasuretheimpactofdifferentgreenhousegasesonglobalwarming.Becausegreenhousegasessuchasmethane(CH₄)andnitrous
oxide(N₂O)trapheatintheatmospheretodifferentdegrees,CO₂eallowsustoexpresstheirimpactonglobalwarminginacommonunit(CO₂).
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING4
Batterytypes:howtheydifferandwhywefocusonLFPandNMC811
Lithium-ionbatteriesarethemostwidelyusedenergystoragesystems
inelectricvehicles,differingmainlyintheirchemicalcomposition,whichaffectstheirperformance,cost,andenvironmentalimpact.
Forourstudy,wefocusonNickelManganeseCobalt(NMC811)—namedforthe8:1:1ratio
ofnickel,manganeseandcobaltused—andLithiumIronPhosphate(LFP),whichdiffer
incost,weight,andCO₂eemissions(seeExhibit2,representingtheaverageproductioninAsia).
NMC811batteriesareknownfortheirhighenergydensity,storing265–290Wh/kgatthecell
level.Atthebatterylevel,includingcasingandcoolingsystems,theyweighbetween6.2kgand7.2kgperkWh.A500kgNMC811batterycandeliver75kWh,significantlymorethanacomparable
LFPbattery,whichprovides55kWh.ThismakesNMC811idealforhigh-performanceEVswherespaceandweightarecritical.However,NMC811batteriesarecostlierataround$100perkWh,approx.doublethatofLFPbatteries,andcanhavemorethantwicetheenvironmentalimpact.
LithiumIronPhosphate(LFP)batteriesareknownfortheirlongcyclelifeandstrongsafetyprofileduetoalowerriskofthermalrunaway,whichcausesabatterytocatchfire.However,theirlower
energydensity(160–200Wh/kg)requiresthemtobelargerorheavier,at8.6to9.6kgperkWh,
comparedtoNMC811batteries.LFPbatteriesaremorecost-effective,withpricesdroppingto$50
perkWhin2024,abouthalfthecostofNMC811batteries,becausetheydonotrelyonscarcemate-rialslikecobaltandhaveseenanincreaseinproductionscale.Additionally,LFPbatteries,generatingsignificantlylowerCO₂emissions,areamoreenvironmentallyfriendlyoption.However,recycling
remainschallengingduetotheabsenceofvaluablematerialsforrecoverybesidelithiumandlowpricesfornewLFPbatteries.
Exhibit2|PopularNMC811andLFPbatteriesdifferincost,weightandCO₂emissions
Cost1in$perkWh
Density2inWhperkg
Weight3inkgperkWh
Emissions4inkgCO2eperkWh
八
NMC811battery
~100
265–290
6.2–7.2
~180
LFPbattery
~50
160–200
8.6–9.6
~85
1BasedonaveragebatterycellpricesinAsia2Densityatcelllevel3Batteryweightatpacklevelof500kg,NMCbattery75kWh,LFPbattery55kWh;Celllevelandpacklevelisnotcomparable,aspacklevelincludesadditionalmaterialsuch
ascasing,coolingsystem,etc.;Therefore,thenumbersforweightanddensitycannotbematched4Consideringrawmaterialsourcingfromthemostcarbonintensivealternatives;Source:ConferenceofMetallurgists(COM)2024
Source:BCGanalysis
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING5
Furtherbatterytypes(outofscopeofthispaper)
InadditiontothemostcommonLFPandNMCbatteries,thereareothertypesoflithium-ionbatteriesthatarenotthefocusinthispaper:
NickelCobaltAluminum(NCA)batteriesNickelCobaltAluminum(NCA)batteriesconsistofnickel,cobalt,and
aluminum,andarevaluedfortheirhighenergydensityandlonglives.Theadditionofaluminumimprovesthestabilityofthebatteryandincreasesitsoveralllife.NCAbatteriesareprimarilyusedbycompaniessuchasTesla,especiallyinhigher-performancevehicles,duetotheirhighenergydensityatarelativelylowweight.However,likeNMCbatteries,
theyareexpensivetoproduceduetothecostofnickelandcobalt.
LithiumManganeseOxide(LMO)batteriesaremadefromlithiummanganeseoxideandarecharacterizedbytheirthermalstabilityandsafety.Thespinelstructureofmanganeseoxideallowsforfastcharginganddischarging,making
LMObatteriessuitableforpowertoolsandelectricvehicles.However,LMObatterieshavealowerenergydensityandashorterlifethanotherlithium-ionbatteries,whichlimitstheiruseinapplicationswherelong-termenergystorageiscritical.
LithiumCobaltOxide(LCO)batteriesaremadeoflithiumcobaltoxideandarecommonlyusedinconsumerelec-
tronicssuchassmartphones,laptops,andcameras.LCObatteriesofferhighenergydensity,whichallowsforcompact
batterysizesinportabledevices.However,theyhavearelativelyshortlifespanandarepronetothermalinstability,
whichcanleadtosafetyconcernsifnotmanagedproperly.Thehighcostandethicalconcernsassociatedwiththesourc-ingofcobaltarealsochallenges.
Solid-statebatteriesareanemergingtechnologythatreplacestheliquidorgelelectrolytefoundintraditionallithi-um-ionbatterieswithasolidelectrolyte.Thisdesignpromisesseveraladvantages,includinghigherenergydensity,im-provedsafety,andlongerlife.Solid-statebatteriesarestillinthedevelopmentstage,buttheyhavesignificantpotentialforfutureapplicationsinelectricvehiclesandportableelectronics,wheretheycouldofferimprovedperformanceandsafetyovercurrentbatterytechnologies.
Materialvs.batteryemissions
Inthisstudy,weusetwounitstotalkaboutemissions:
1.CO₂eperkgwhentalkingabouttheemissionsofabatteryactivematerial(BAM)
2.CO₂eperkWhwhentalkingaboutemissionsfromafinishedbattery
BAMemissions:AsBAMistypicallysourcedbyweight,thispaperusesCO₂eperkgofBAMastheunitofmeasure-menttoreflectcommonsourcingpracticesinbatteryproduction.
Batteryemissions:TheoverallemissionsimpactofbatteriesismeasuredinkgCO₂eperkWhtoplaceemissionsinthecontextoftheend-useofthematerials,suchasinEVs.ForEVs,batteriesaretypicallysizedbypowercapacity,e.g.,anenduserwouldbuyaBEVwitha50kWhbattery.
Linkingthetwoemissions:TheCO₂emissionsperkWharecalculatedbyfirstdeterminingtheamount(inkg)of
eachmetalrequiredtoproduce1kWhofbatterycapacityforbothLFPandNMC811batteries.Thematerialcomposi-tionisbasedonthereportedbillofmaterialsandstoichiometriccalculationsforthesebatterytypes.TheCO₂emis-sionsperkWharethencalculatedbymultiplyingtheCO₂eemissionsperkgofeachmetalbytheamountofthat
metalrequiredtoproduce1kWhofbatterycapacity.
Examplecalculation:ExhibitAandExhibitBillustratehowCO₂emissionsforBAMwerecalculated,withtheexampleofBAMforgrey/blackprimarysourcingforNMC811andLFPbatteries.Thesamecalculationmethodisusedforallsourcingroutes.
ToestimatetheemissionsofafullEVbattery,therespectivebatterypowerwouldbemultipliedbytheCO₂eemissionsperunitofpower,i.e.,kWh:
TotalCO₂eEmissionsofanEVbattery:AssumingtheenduserwantstopurchaseaBEVwitha50kWhNMC811battery,thetotalemissionswouldbe181.7kgCO₂eperkWh×50kWh=9,085kgCO₂eperbattery
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING6
Materialvs.batteryemissions(cont.)
ExhibitA|ExamplecalculationofCO₂emissionsforNMC811grey/blacksourcing
1.1
CO2emissionsinkgCO2e/kWh
11.1
29.6
60.1
18.8
Requiredmaterialinkg/kWh2
CO2emissions
5.1
0.2
×
=
18.5
0.6
×
=
80.6
0.4
×
=
2.8
21.9
×
=
9.6
2.0
×
=
inkgCO2eq/kgmaterial1
Manganese
Lithium-Hydroxide
Cobalt
Nickel
Graphite
NMC811BAMfor100%
grey/blacksourcing
1Emissionfornickelandcobaltadjustedtoreflectthebatterychemicals,sincetheunitreferenceinliteratureandcompanyreportsgivenaskgmetalinbatterychemical
2.Assumptionsof75kWhbatterywithenergydensity290Wh/kg
Source:LCAsfromacademicstudiesorcompanywebsites,BOMfromacademicstudiesandArgonneLabcalculations,BCGExperts
ExhibitB|ExamplecalculationofCO₂emissionsforLFPgrey/blacksourcing
CO2emissionsinkgCO2e/kWh
15.4
13.9
LFPBAMfor100%grey/blacksourcing
Requiredmaterialinkg/kWh2
CO2emissions
inkgCO2eq/kgmaterial1
=31.6×0.5
=9.2×1.5
Lithium-Carbonate
Graphite
1Assumptionsof55kWhbatterywithenergydensity200Wh/kg
Source:LCAsfromacademicstudiesorcompanywebsites,BOMfromacademicstudiesandArgonneLabcalculations,BCGExperts
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING7
MoredetailsontheBAMemissionsestimationfortheinterestedreader
TheenvironmentalimpactofbatterymaterialsisassessedintermsofkgCO₂eperkgofmetalorcompound.Thebreakdownforthespecificmaterialsisasfollows:
Nickel(Ni)andCobalt(Co):TheenvironmentalimpactofnickelandcobaltisquantifiedbymeasuringtheCO₂
emissions(expressedinkgCO₂e)perkgofnickelorcobaltcontainedintheirrespectivecompounds,nickelsulfate(NiSO₄·6H₂O)andcobaltsulfate(CoSO₄·7H₂O).Thisapproachprovidesanaccuraterepresentationofthe"active"
metalcontentwithinthesecompounds,consistentwithcommonindustrypracticesandmethodologicalstandards.
Itisimportanttonotethatwhilethismethodisaccurate,theCO₂valuesmustbenormalizedtoreflecttheemissionsassociatedwiththeentirecompound,notjustthepuremetal.Asaresult,theremaybevariationsinthecalculated
emissionsperkWhwhenappliedtotheoverallbatteryproduction.
Lithium(Li),Manganese(Mn),andGraphite(C):TheassessmentismadeinkgCO₂eperkgofLi₂CO₃,LiOH·H₂O,HPMSM(HighPurityManganeseSulfateMonohydrate),orgraphite.Thisapproachisemployedbecausethesemateri-alsaretypicallyuseddirectlyintheircompoundforms,makingtheenvironmentalimpactoftheentirecompound
morerelevant.
Thus,bymeasuringkgCO₂eperkgofmetalorcompound,wecanfairlycomparetheenvironmentalimpactoftheactualmetalcontentofdifferentmetals.
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING8
Emissionsdrivers:batteryactivematerialasmajorcontributor
tomanufacturingemissions
Themainbatteryactivematerialsarelithium,nickel,cobalt,manganese,iron,phosphate,andgraphite.
Onthecathodeside,NMCbatteriesuselithium,nickel,manganese,andcobalt,whileLFPbatteriesuselithium,iron,andphosphate.Forbothtypesofbatteries,theanodesidetypicallyusesgraphiteandanelectrolytecontaininglithiumtotransferelectronsduringcharginganddischarging.The
currentflowsthroughcopper(anode)andaluminum(cathode)foils,fromthebatteryintotheelec-triccircuitoftheEVorintotheotherdirectionwhenrecharged.
Reducingemissionsinbatteryproductiondependslargelyonfivekeymaterials—lithium(Li),nickel
(Ni),cobalt(Co),manganese(Mn),andgraphite,whicharethemaincontributorstoemissionsdueto
energy-intensiveextractionandprocessing.Othermaterialslikecopperandaluminumdonotaffect
batterychemistry,andironandphosphatehavelowercarbonfootprintsandlimitedrecyclingpotential.
Decarbonizingthesekeymaterialscanreduceemissionsconsiderably,especiallyinNMC811batter-ies,whereactivematerialsaccountfor66%ofemissions.A75kWhNMC811batteryhasacarbon
footprintofapproximately180kgCO₂eperkWh,duetotherelianceonnickelandcobalt,whicharemorecarbon-intensivetomineandprocess.LFPbatterieshaveover50%loweremissionsthan
NMC811,around85kgCO₂eperkWhfora55-kWhbattery.LFPbatterieshavealowerfootprintduetotheuseofmoreabundant,lower-emissionmaterialslikeironphosphate,whichkeepsemissionsfromBAMtoonly35%oftotalbatteryemissions(seeExhibit3).
Exhibit3|LFPbatterieshavea~50%lowerCO₂footprintthanNMC811batteries
Manganese
Lithium-HydroxideLithium-Carbonate
Cobalt
Nickel
Graphite
84.1
15.4
Steel
13.9
1.4
2.14.01.6
15.8
14.2
9.5
Othermaterials
20.0
NMC811LFP
66%shareoftotalbatteryemissionsinkgand%
PlasticCopper
IronPhosphateAluminium
Furtherbattery
material-kept
constantin
analysis
Batteryactivematerial
–focusofthispaper
Batterymanufacturingprocess
18.8
1.63.8
15.0
181.711.1
29.6
InkgCO2eperkWh
~12066%
~6034%
~29
35%
~55
65%
-54%
60.1
25.0
1.8
1.1
~120
Assumptions:1)EmissionssourcedfromCAMproductionandbatteryassemblyisassumedas20kgCO₂/kWhforLFPand25kgCO₂/kWhforNMC811.
2)20%materiallossisassumedduringCAMproduction.3)Powerofbatteriesassumedas75kWhforNMC811and55kWhforLFPbattery.Source:Literaturereview;companywebsites;Cylib;Abdelbakyet.Al;BCGAnalysis
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING9
DetailsontheNMC811andLFPBAM
NMC811battery
TheNMC811batterywasselectedbecauseofitshighenergydensity,whichmeansthebatterycanstorealargeamountofenergyrelativetoitsweight.
Lithiumhydroxide(LiOH•H₂O)alsoplaysanimportantroleintheNMC811battery.Lithiumhydroxide(LiOH.H₂O),asopposedtolithiumcarbonateforLFPbatteries,ispreferredforthemorepowerfulNMCbattery.Thischoiceallowsforamorestableandhigher-capacitycrystalstructureinthecathode,whichiskeytoachievingthehighenergydensityandlonglifethatNMC811batteriesareknownfor.
Nickelsulfate(NiSO₄·6H₂O)playsanimportantroleinincreasingtheenergydensityofthebattery.InNMC811
batteries,nickelmakesup80%ofthecathode,allowingthebatterytostoremoreenergywithoutincreasingitssizeorweight.Thisisespeciallyimportantforelectricvehicles,whichrequirepowerfulbatterieswithoutcompromisingonspace.Inaddition,usingmorenickelreducestheneedforcobalt,whichismoreexpensiveandhassupplychain(ethical)challenges.
Cobaltsulfate(CoSO₄·7H₂O)isaddedtostabilizethebatterychemistryforbetterenergydensityandalongerlife.However,thereisgrowingpressuretoreduceoreveneliminatecobaltfromcathodesduetosourcingconcerns,as
mostcobaltisminedintheDemocraticRepublicofCongo(DRC)andrefinedinChina.In2020,69%ofcobaltwas
minedintheDRC,and67%ofbattery-gradecobaltsulfatewasrefinedinChina.1ThisconcentratedroutemayfacedisruptionsduetoconcernsoverartisanalminingpracticesintheDRCandtherisksassociatedwithheavyrelianceonChinaamidtradetensions.Artisanalminingreferstosmall-scale,ofteninformalminingpracticeswhereworkersextractcobaltinhazardousconditionswithlittletonosafetymeasures.
Manganesesulfate(MnSO4·H₂O)contributestothestabilityandsafetyofthebattery.Ithelpsimprovethethermalstabilityofthebattery,reducingtheriskofoverheatingandextendingbatterylife.Manganeseismoreabundantandlessexpensivethancobalt,whichhelpskeepproductioncostsdownwhilemaintainingbatteryperformance.
Graphite(C)isusedastheanodematerial,asinLFPbatteries.Itisessentialforstoringandreleasinglithiumionsduringthebattery'schargeanddischargecycles.Withoutgraphite,theNMC811batterywouldnotbeabletoachievetheefficiencyandreliabilityrequiredfordemandingapplicationssuchaselectricvehicles,whereconsistentperfor-
manceovermanychargecyclesiscritical.
LFPBattery
LFPbatteriesareasmartchoiceforthoselookingtobalancecost,durability,andenvironmentalsustainability.Theyofferreliableperformanceusingbatteryactivematerialsthatareeasiertosourceandmoreaffordable,makingthemsuitableforawiderangeofapplications.
Lithiumcarbonate(Li₂CO₃)isthekeyingredientinLFPbatteries.Itisresponsibleforstoringandreleasingenergy,allowingthebatterytoefficientlypowerdevicesandvehicles.LFPbatteriesspecificallyuselithiumcarbonate(Li2CO3),whichisessentialformakingthebattery'scathode—thepartofthebatterythathelpsmanagetheflowofenergy.Thepurityandavailabilityofthislithiumcompoundiscriticalbecauseitdirectlyaffectshowwellandconsistentlythe
batteryperformsandhowlongitlasts.
Graphite(C)servesastheprimarymaterialforthebattery'sanode,thepartwherelithiumionsarestoredwhenthebatteryisnotinuse.Graphite'slayeredstructureallowsittoeffectivelystoretheseionsandreleasethemwhenneed-ed,contributingtothebattery'sstabilityandensuringsmoothoperationovertime.
1Das,J.;Kleiman,A.;Rehman,A.U.;Verma,R.;Young,M.H."TheCobaltSupplyChainandEnvironmentalLifeCycleImpactsofLithium-IonBatteryEnergyStorageSystems,"Sustainability2024,16,1910.
/10.3390/su16051910
BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING10
Decarbonizationlevers:twokeyleverstophysicallydecarbonizeactivematerials
BothLFPandNMC811batteriesrequiresignificantamountsofrawmaterialsforbatteryactivecomponents.
Theextractionandprocessingofthesematerialsisenergy-intensiveandresultsinsignificant
carbonemissions.Theseemissionscanbereducedeitherbymakingthemanufacturingprocessitselfmoresustainable(physicallygreen),byrecycling,orbybalancingemissionsthroughcarbonaccountingmethods.Thispaperfocusesonlyonthefirsttwoapproaches—analyzingmoresus-tainablesourcingoptionsforproductionandrecyclingmaterials—becausetheydirectlyad
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度黑龙江省高校教师资格证之高等教育心理学题库附答案(典型题)
- 邮政快递智能技术专业大纲+样卷+参考答案
- 文学批评与理论研究试题及答案
- 文艺汇演开幕词7篇
- 汤姆索亚历险记读书笔记10篇
- 2025年个人向个人借款协议
- 租赁期满解除合同(2025年版)
- 消防设施性能标准试题及答案
- 平台合作协议(2025年版)
- 离婚协议女方专用成品(2025年版)
- 骨痿中医诊疗方案
- 集成电路封装可靠性定义和应用
- 烧烤场地租赁合同Word版参考
- 史上最全PCBA外观检验标准
- 繁星春水片段摘抄赏析
- 国际标准智商测试39题详细答案
- 碎石技术交底
- 汽车理论课后作业matlab编程详解带注释
- 国家开放大学《水利水电工程造价管理》章节测试参考答案
- 神探夏洛克剧本(共13页)
- 意大利瑞吉欧教育记录《影子》
评论
0/150
提交评论