【波士顿咨询】2024赋能未来战略性电池采购助力纯电动汽车BEV的可持续发展报告_第1页
【波士顿咨询】2024赋能未来战略性电池采购助力纯电动汽车BEV的可持续发展报告_第2页
【波士顿咨询】2024赋能未来战略性电池采购助力纯电动汽车BEV的可持续发展报告_第3页
【波士顿咨询】2024赋能未来战略性电池采购助力纯电动汽车BEV的可持续发展报告_第4页
【波士顿咨询】2024赋能未来战略性电池采购助力纯电动汽车BEV的可持续发展报告_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

WHITEPAPER

PoweringtheFuture

UnlockingBatteryElectricVehicleSustainabilityThroughStrategicBatterySourcing

November2024

byNicoleVoigt|JohannaPütz|NicolasMeyer|NathanNiese|TimmLux|MaraKronauer

BostonConsultingGrouppartnerswithleaders

inbusinessandsocietytotackletheirmost

importantchallengesandcapturetheirgreatest

opportunities.BCGwasthepioneerinbusiness

strategywhenitwasfoundedin1963.Today,

weworkcloselywithclientstoembracea

transformationalapproachaimedatbenefitingallstakeholders—empoweringorganizationstogrow,buildsustainablecompetitiveadvantage,and

drivepositivesocietalimpact.

Ourdiverse,globalteamsbringdeepindustryandfunctionalexpertiseandarangeofperspectives

thatquestionthestatusquoandsparkchange.

BCGdeliverssolutionsthroughleading-edge

managementconsulting,technologyanddesign,andcorporateanddigitalventures.Weworkinauniquelycollaborativemodelacrossthefirmandthroughoutalllevelsoftheclientorganization,

fueledbythegoalofhelpingourclientsthriveandenablingthemtomaketheworldabetterplace.

Content

02Introduction

04Batterytypes:howtheydifferandwhywefocusonLFPandNMC811

08Emissionsdrivers:batteryactivematerialasmajorcontributortomanu-

facturingemissions

10Decarbonizationlevers:

twokeyleverstophysicallydecarbonizeactive

materials

18Implications

fordecision-makers

20AbouttheAuthors

12Measuringtheimpact:

CO₂emissionsinprimary

sourcingandrecycling

15Bringingittogether:

emissionsreduction

potentialdependson

sourcingandbatterytype

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING1

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING2

Introduction

Asnationsstrivetoreduceemissions,transitioningfrominternalcombustionengine(ICE)vehiclestoelectricvehicles(EVs)isessential.

EVsofferclearenvironmentalbenefitsoverICEvehicles,duetotheirloweroperatingemissions,particularlywhenpoweredbyrenewableenergy.

However,theemissionsassociatedwithEVbatteryproductionareanurgentconcern,because

whiletheydonotunderminetheoverallsustainabilityofEVs,theyclearlypresentanopportunityforfurthertransparencyandimprovement.Onlybyunderstandingthesourcesofemissionsin

batteryproductionaswellasbatterymaterialproductioncandecision-makersexplorewaysto

reducethem.

Ourfocusisontractionbatteries,whichpowerthevehicle'selectricmotorandareoneofthelargestcontributorstoemissionsinEVproduction.Emissionssourcedfromraw(battery)materialsforthemaccountformorethanathirdofthetotalCO₂equivalent(CO₂e)ofanaverageBatteryElectricVehi-cle(BEV).Inaddition,theCO₂eemissionsofaBEVarenearlydoublethoseofanICEvehicleduetothehigherraw-materialrequirements,basedontheaveragebatteryproductioninAsia,nottaking

greengridimpactintoconsideration.Becausethechoicesofrawbatterymaterials—includingtheirextractionandprocessing—occurearlyinthesupplychain,beforetheproductreachesthemanufac-turer,thesedecisionshaveasizeableimpactonscope3upstreamemissions.

Exhibit1|Productionemissiondependingonbatterytype

BatteryActiveMaterials(BAM)

ShareofCO2eemissions

ICE

SteelAlu

tCO2

Cu

Other

BEV

16%

LithiumGraphiteIron

phosphate

19%

6%

Lithium

14%

Cobalt

ManganeseNickel

50%

Graphite

Battery

ShareofCO2eemissions

Non-activematerials

Assembly

Non-activematerials

Assembly

Vehicle

5%

45%1.750%

16%9%

9.1

tCO2

ShareofCO2eemissions

NMC

811

25%

1%

Battery

60%(13.6)

Battery

27%

(4.6)

66%

(9.1)

BAM

BAM

16.8

tCO2

4.6

tCO2

13.6

tCO2

22.5tCO2

42%8.2

LFP

37%

32%

39%

29%

15%

24%

20%

20%

12%

8%

6%

5%

Note:Outsideinview

Source:BCGanalysis

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING3

Thus,ateverystopalongthesupplychain—frommaterialsminersandproducerstometaland

batteryrecyclers,batterymanufacturers,andEVmakers—companiesmustfocusonunderstand-ingtheemissions,thesupply-demandprofileandtherelativecostprofileofdifferentsourcing

optionstounderstandthetradeoffsandsetuptheirsupplychainsaccordinglyandleveragebothgreenprimarysourcingandrecycling.Ensuringaccesstosupplyfromlow-emissionsproduction

routes,expandingrecyclingfacilities,andsecuringsecondarymaterialssuchasend-of-life(EOL)

batteriesareallcriticaltolong-termsustainabilityandmaintainingacompetitiveadvantage.By

balancingbothrecyclingandsustainableprimarysourcingtomeetfuturedemandwhileminimiz-ingenvironmentalimpact,companiescansignificantlyreducetheircarbonfootprintandcontrib-utetoamoresustainablefuture.

Thefollowingparagraphsbrieflyhighlightthispaper'skeyinsights:

•Batterytypes:Wefocusonthetwomostcommonbatterytypes,NMC811andLFP,namedforthe8:1:1ratioofnickel,manganeseandcobaltusedinthecathodeandtheuseoflithium,iron,andphosphate,respectively.NMCbatteriestypicallyallowforfasterchargingandgreaterrangebystoringmoreenergyinasmallerspace,buttheyarecostlierandhavehighermanufacturingemissionsthanLFPbatteries.ThelowerenergydensityofLFPbatteriesmeanstheyweighmoreforthesamedistance,andthereforeBEVsusingLFPbatterieshavealowerrangecomparedtothosewithNMCs.

•Emissionsdrivers:Batteryactivematerials(BAM),suchasnickel,manganese,cobalt,lithiumandgraphite,storeandreleaseenergyinabattery—theyarethekeytechnologycomponent

ofthebattery.ForNMCbatteries,thesematerialsareresponsiblefor60–70%ofthetotalCO₂eproductionemissionsperkWh,comparedto35%forLFPbatteries.WhiledecarbonizingBAMiscrucialtoreducingemissionswithoutcompromisingbatteryperformance,decarbonizingothermaterials,giventheirconsiderableshareparticularlyinLFPbatteries,mustalsobeconsidered.

•Decarbonizationlevers:WeconsidertwokeyleverstodecarbonizeBAM:primary(sourcing

greenprimarymaterials)andsecondary(recycling).Greenbatteryproductionrequiresboth,astheavailabilityofgreenprimaryandsecondarymaterialsandcapacitymaybelimitedinthefuture.

•Impactofsourcinglever("primarylever"):GreensourcingofBAMcansignificantlyre-

duceemissions.ForNMCbatteries,themostemission-intensivesourcingmethods(grey/blacksourcing)produceabout180kgCO₂eperkWh,versus~70kgCO₂eperkWhforgreensourcing,areductionofabout60%.ForLFPbatteries,usinggrey/blackmaterialscreatesapproximately

85kgCO₂eperkWh,versusabout30%to~60kgCO₂eperkWhforgreensourcing.Forindi-

vidualmaterials,emissionsreductionsof>90%arepossiblecomparedtogrey/blacksourcing.WhileBAM'sprimaryemissionsreductionpotentialissignificant,thelimitedsupplyofgreenmaterialsandintensecompetitionforthemmakereducinggraymaterialemissionsbyimple-mentingESG-compliantstrategiesessential—thoughthiswillbemoreachievableforcertaingraysourcesthanothers,giventhebroadrangeofgraysourcingavailable.

•Impactofrecyclinglever("secondarylever"):RecyclingisthelowestCO₂eoptionforsome

BAMmaterialsandplaysakeyroleinemissionsreduction,thoughnotalwaysmatchingthereduc-tionpossiblewithsustainableprimarysourcing.Whileexpectedtocontributeonly10%–20%of

totalBAMsupplyby2030,thescarcityofgreenprimaryandsecondaryBAMmakesrecyclinga

necessity.Inaddition,itavoidsmining-relatedconcerns,helpsmeetrecyclingtargetslikethosesetbytheEuropeanUnion,andreducessupply-chainrisks.Comparedtogrey/blacksourcing,which

resultsin~180kgCO₂perkWhforNMC811batteriesand~85kgCO₂perkWhforLFPbatteries,

recyclingcanreduceemissionsbyupto~50%forNMC811andupto~25%forLFP.Newerrecyclingtechnologiescurrentlyinindustrializationstagepromiseafurtheremissionreductionpotential.

CO2e

Toexaminethecarbonfootprintofvehicles,weuseCO₂equivalent(CO₂e)asastandardunittomeasuretheimpactofdifferentgreenhousegasesonglobalwarming.Becausegreenhousegasessuchasmethane(CH₄)andnitrous

oxide(N₂O)trapheatintheatmospheretodifferentdegrees,CO₂eallowsustoexpresstheirimpactonglobalwarminginacommonunit(CO₂).

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING4

Batterytypes:howtheydifferandwhywefocusonLFPandNMC811

Lithium-ionbatteriesarethemostwidelyusedenergystoragesystems

inelectricvehicles,differingmainlyintheirchemicalcomposition,whichaffectstheirperformance,cost,andenvironmentalimpact.

Forourstudy,wefocusonNickelManganeseCobalt(NMC811)—namedforthe8:1:1ratio

ofnickel,manganeseandcobaltused—andLithiumIronPhosphate(LFP),whichdiffer

incost,weight,andCO₂eemissions(seeExhibit2,representingtheaverageproductioninAsia).

NMC811batteriesareknownfortheirhighenergydensity,storing265–290Wh/kgatthecell

level.Atthebatterylevel,includingcasingandcoolingsystems,theyweighbetween6.2kgand7.2kgperkWh.A500kgNMC811batterycandeliver75kWh,significantlymorethanacomparable

LFPbattery,whichprovides55kWh.ThismakesNMC811idealforhigh-performanceEVswherespaceandweightarecritical.However,NMC811batteriesarecostlierataround$100perkWh,approx.doublethatofLFPbatteries,andcanhavemorethantwicetheenvironmentalimpact.

LithiumIronPhosphate(LFP)batteriesareknownfortheirlongcyclelifeandstrongsafetyprofileduetoalowerriskofthermalrunaway,whichcausesabatterytocatchfire.However,theirlower

energydensity(160–200Wh/kg)requiresthemtobelargerorheavier,at8.6to9.6kgperkWh,

comparedtoNMC811batteries.LFPbatteriesaremorecost-effective,withpricesdroppingto$50

perkWhin2024,abouthalfthecostofNMC811batteries,becausetheydonotrelyonscarcemate-rialslikecobaltandhaveseenanincreaseinproductionscale.Additionally,LFPbatteries,generatingsignificantlylowerCO₂emissions,areamoreenvironmentallyfriendlyoption.However,recycling

remainschallengingduetotheabsenceofvaluablematerialsforrecoverybesidelithiumandlowpricesfornewLFPbatteries.

Exhibit2|PopularNMC811andLFPbatteriesdifferincost,weightandCO₂emissions

Cost1in$perkWh

Density2inWhperkg

Weight3inkgperkWh

Emissions4inkgCO2eperkWh

NMC811battery

~100

265–290

6.2–7.2

~180

LFPbattery

~50

160–200

8.6–9.6

~85

1BasedonaveragebatterycellpricesinAsia2Densityatcelllevel3Batteryweightatpacklevelof500kg,NMCbattery75kWh,LFPbattery55kWh;Celllevelandpacklevelisnotcomparable,aspacklevelincludesadditionalmaterialsuch

ascasing,coolingsystem,etc.;Therefore,thenumbersforweightanddensitycannotbematched4Consideringrawmaterialsourcingfromthemostcarbonintensivealternatives;Source:ConferenceofMetallurgists(COM)2024

Source:BCGanalysis

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING5

Furtherbatterytypes(outofscopeofthispaper)

InadditiontothemostcommonLFPandNMCbatteries,thereareothertypesoflithium-ionbatteriesthatarenotthefocusinthispaper:

NickelCobaltAluminum(NCA)batteriesNickelCobaltAluminum(NCA)batteriesconsistofnickel,cobalt,and

aluminum,andarevaluedfortheirhighenergydensityandlonglives.Theadditionofaluminumimprovesthestabilityofthebatteryandincreasesitsoveralllife.NCAbatteriesareprimarilyusedbycompaniessuchasTesla,especiallyinhigher-performancevehicles,duetotheirhighenergydensityatarelativelylowweight.However,likeNMCbatteries,

theyareexpensivetoproduceduetothecostofnickelandcobalt.

LithiumManganeseOxide(LMO)batteriesaremadefromlithiummanganeseoxideandarecharacterizedbytheirthermalstabilityandsafety.Thespinelstructureofmanganeseoxideallowsforfastcharginganddischarging,making

LMObatteriessuitableforpowertoolsandelectricvehicles.However,LMObatterieshavealowerenergydensityandashorterlifethanotherlithium-ionbatteries,whichlimitstheiruseinapplicationswherelong-termenergystorageiscritical.

LithiumCobaltOxide(LCO)batteriesaremadeoflithiumcobaltoxideandarecommonlyusedinconsumerelec-

tronicssuchassmartphones,laptops,andcameras.LCObatteriesofferhighenergydensity,whichallowsforcompact

batterysizesinportabledevices.However,theyhavearelativelyshortlifespanandarepronetothermalinstability,

whichcanleadtosafetyconcernsifnotmanagedproperly.Thehighcostandethicalconcernsassociatedwiththesourc-ingofcobaltarealsochallenges.

Solid-statebatteriesareanemergingtechnologythatreplacestheliquidorgelelectrolytefoundintraditionallithi-um-ionbatterieswithasolidelectrolyte.Thisdesignpromisesseveraladvantages,includinghigherenergydensity,im-provedsafety,andlongerlife.Solid-statebatteriesarestillinthedevelopmentstage,buttheyhavesignificantpotentialforfutureapplicationsinelectricvehiclesandportableelectronics,wheretheycouldofferimprovedperformanceandsafetyovercurrentbatterytechnologies.

Materialvs.batteryemissions

Inthisstudy,weusetwounitstotalkaboutemissions:

1.CO₂eperkgwhentalkingabouttheemissionsofabatteryactivematerial(BAM)

2.CO₂eperkWhwhentalkingaboutemissionsfromafinishedbattery

BAMemissions:AsBAMistypicallysourcedbyweight,thispaperusesCO₂eperkgofBAMastheunitofmeasure-menttoreflectcommonsourcingpracticesinbatteryproduction.

Batteryemissions:TheoverallemissionsimpactofbatteriesismeasuredinkgCO₂eperkWhtoplaceemissionsinthecontextoftheend-useofthematerials,suchasinEVs.ForEVs,batteriesaretypicallysizedbypowercapacity,e.g.,anenduserwouldbuyaBEVwitha50kWhbattery.

Linkingthetwoemissions:TheCO₂emissionsperkWharecalculatedbyfirstdeterminingtheamount(inkg)of

eachmetalrequiredtoproduce1kWhofbatterycapacityforbothLFPandNMC811batteries.Thematerialcomposi-tionisbasedonthereportedbillofmaterialsandstoichiometriccalculationsforthesebatterytypes.TheCO₂emis-sionsperkWharethencalculatedbymultiplyingtheCO₂eemissionsperkgofeachmetalbytheamountofthat

metalrequiredtoproduce1kWhofbatterycapacity.

Examplecalculation:ExhibitAandExhibitBillustratehowCO₂emissionsforBAMwerecalculated,withtheexampleofBAMforgrey/blackprimarysourcingforNMC811andLFPbatteries.Thesamecalculationmethodisusedforallsourcingroutes.

ToestimatetheemissionsofafullEVbattery,therespectivebatterypowerwouldbemultipliedbytheCO₂eemissionsperunitofpower,i.e.,kWh:

TotalCO₂eEmissionsofanEVbattery:AssumingtheenduserwantstopurchaseaBEVwitha50kWhNMC811battery,thetotalemissionswouldbe181.7kgCO₂eperkWh×50kWh=9,085kgCO₂eperbattery

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING6

Materialvs.batteryemissions(cont.)

ExhibitA|ExamplecalculationofCO₂emissionsforNMC811grey/blacksourcing

1.1

CO2emissionsinkgCO2e/kWh

11.1

29.6

60.1

18.8

Requiredmaterialinkg/kWh2

CO2emissions

5.1

0.2

×

=

18.5

0.6

×

=

80.6

0.4

×

=

2.8

21.9

×

=

9.6

2.0

×

=

inkgCO2eq/kgmaterial1

Manganese

Lithium-Hydroxide

Cobalt

Nickel

Graphite

NMC811BAMfor100%

grey/blacksourcing

1Emissionfornickelandcobaltadjustedtoreflectthebatterychemicals,sincetheunitreferenceinliteratureandcompanyreportsgivenaskgmetalinbatterychemical

2.Assumptionsof75kWhbatterywithenergydensity290Wh/kg

Source:LCAsfromacademicstudiesorcompanywebsites,BOMfromacademicstudiesandArgonneLabcalculations,BCGExperts

ExhibitB|ExamplecalculationofCO₂emissionsforLFPgrey/blacksourcing

CO2emissionsinkgCO2e/kWh

15.4

13.9

LFPBAMfor100%grey/blacksourcing

Requiredmaterialinkg/kWh2

CO2emissions

inkgCO2eq/kgmaterial1

=31.6×0.5

=9.2×1.5

Lithium-Carbonate

Graphite

1Assumptionsof55kWhbatterywithenergydensity200Wh/kg

Source:LCAsfromacademicstudiesorcompanywebsites,BOMfromacademicstudiesandArgonneLabcalculations,BCGExperts

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING7

MoredetailsontheBAMemissionsestimationfortheinterestedreader

TheenvironmentalimpactofbatterymaterialsisassessedintermsofkgCO₂eperkgofmetalorcompound.Thebreakdownforthespecificmaterialsisasfollows:

Nickel(Ni)andCobalt(Co):TheenvironmentalimpactofnickelandcobaltisquantifiedbymeasuringtheCO₂

emissions(expressedinkgCO₂e)perkgofnickelorcobaltcontainedintheirrespectivecompounds,nickelsulfate(NiSO₄·6H₂O)andcobaltsulfate(CoSO₄·7H₂O).Thisapproachprovidesanaccuraterepresentationofthe"active"

metalcontentwithinthesecompounds,consistentwithcommonindustrypracticesandmethodologicalstandards.

Itisimportanttonotethatwhilethismethodisaccurate,theCO₂valuesmustbenormalizedtoreflecttheemissionsassociatedwiththeentirecompound,notjustthepuremetal.Asaresult,theremaybevariationsinthecalculated

emissionsperkWhwhenappliedtotheoverallbatteryproduction.

Lithium(Li),Manganese(Mn),andGraphite(C):TheassessmentismadeinkgCO₂eperkgofLi₂CO₃,LiOH·H₂O,HPMSM(HighPurityManganeseSulfateMonohydrate),orgraphite.Thisapproachisemployedbecausethesemateri-alsaretypicallyuseddirectlyintheircompoundforms,makingtheenvironmentalimpactoftheentirecompound

morerelevant.

Thus,bymeasuringkgCO₂eperkgofmetalorcompound,wecanfairlycomparetheenvironmentalimpactoftheactualmetalcontentofdifferentmetals.

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING8

Emissionsdrivers:batteryactivematerialasmajorcontributor

tomanufacturingemissions

Themainbatteryactivematerialsarelithium,nickel,cobalt,manganese,iron,phosphate,andgraphite.

Onthecathodeside,NMCbatteriesuselithium,nickel,manganese,andcobalt,whileLFPbatteriesuselithium,iron,andphosphate.Forbothtypesofbatteries,theanodesidetypicallyusesgraphiteandanelectrolytecontaininglithiumtotransferelectronsduringcharginganddischarging.The

currentflowsthroughcopper(anode)andaluminum(cathode)foils,fromthebatteryintotheelec-triccircuitoftheEVorintotheotherdirectionwhenrecharged.

Reducingemissionsinbatteryproductiondependslargelyonfivekeymaterials—lithium(Li),nickel

(Ni),cobalt(Co),manganese(Mn),andgraphite,whicharethemaincontributorstoemissionsdueto

energy-intensiveextractionandprocessing.Othermaterialslikecopperandaluminumdonotaffect

batterychemistry,andironandphosphatehavelowercarbonfootprintsandlimitedrecyclingpotential.

Decarbonizingthesekeymaterialscanreduceemissionsconsiderably,especiallyinNMC811batter-ies,whereactivematerialsaccountfor66%ofemissions.A75kWhNMC811batteryhasacarbon

footprintofapproximately180kgCO₂eperkWh,duetotherelianceonnickelandcobalt,whicharemorecarbon-intensivetomineandprocess.LFPbatterieshaveover50%loweremissionsthan

NMC811,around85kgCO₂eperkWhfora55-kWhbattery.LFPbatterieshavealowerfootprintduetotheuseofmoreabundant,lower-emissionmaterialslikeironphosphate,whichkeepsemissionsfromBAMtoonly35%oftotalbatteryemissions(seeExhibit3).

Exhibit3|LFPbatterieshavea~50%lowerCO₂footprintthanNMC811batteries

Manganese

Lithium-HydroxideLithium-Carbonate

Cobalt

Nickel

Graphite

84.1

15.4

Steel

13.9

1.4

2.14.01.6

15.8

14.2

9.5

Othermaterials

20.0

NMC811LFP

66%shareoftotalbatteryemissionsinkgand%

PlasticCopper

IronPhosphateAluminium

Furtherbattery

material-kept

constantin

analysis

Batteryactivematerial

–focusofthispaper

Batterymanufacturingprocess

18.8

1.63.8

15.0

181.711.1

29.6

InkgCO2eperkWh

~12066%

~6034%

~29

35%

~55

65%

-54%

60.1

25.0

1.8

1.1

~120

Assumptions:1)EmissionssourcedfromCAMproductionandbatteryassemblyisassumedas20kgCO₂/kWhforLFPand25kgCO₂/kWhforNMC811.

2)20%materiallossisassumedduringCAMproduction.3)Powerofbatteriesassumedas75kWhforNMC811and55kWhforLFPbattery.Source:Literaturereview;companywebsites;Cylib;Abdelbakyet.Al;BCGAnalysis

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING9

DetailsontheNMC811andLFPBAM

NMC811battery

TheNMC811batterywasselectedbecauseofitshighenergydensity,whichmeansthebatterycanstorealargeamountofenergyrelativetoitsweight.

Lithiumhydroxide(LiOH•H₂O)alsoplaysanimportantroleintheNMC811battery.Lithiumhydroxide(LiOH.H₂O),asopposedtolithiumcarbonateforLFPbatteries,ispreferredforthemorepowerfulNMCbattery.Thischoiceallowsforamorestableandhigher-capacitycrystalstructureinthecathode,whichiskeytoachievingthehighenergydensityandlonglifethatNMC811batteriesareknownfor.

Nickelsulfate(NiSO₄·6H₂O)playsanimportantroleinincreasingtheenergydensityofthebattery.InNMC811

batteries,nickelmakesup80%ofthecathode,allowingthebatterytostoremoreenergywithoutincreasingitssizeorweight.Thisisespeciallyimportantforelectricvehicles,whichrequirepowerfulbatterieswithoutcompromisingonspace.Inaddition,usingmorenickelreducestheneedforcobalt,whichismoreexpensiveandhassupplychain(ethical)challenges.

Cobaltsulfate(CoSO₄·7H₂O)isaddedtostabilizethebatterychemistryforbetterenergydensityandalongerlife.However,thereisgrowingpressuretoreduceoreveneliminatecobaltfromcathodesduetosourcingconcerns,as

mostcobaltisminedintheDemocraticRepublicofCongo(DRC)andrefinedinChina.In2020,69%ofcobaltwas

minedintheDRC,and67%ofbattery-gradecobaltsulfatewasrefinedinChina.1ThisconcentratedroutemayfacedisruptionsduetoconcernsoverartisanalminingpracticesintheDRCandtherisksassociatedwithheavyrelianceonChinaamidtradetensions.Artisanalminingreferstosmall-scale,ofteninformalminingpracticeswhereworkersextractcobaltinhazardousconditionswithlittletonosafetymeasures.

Manganesesulfate(MnSO4·H₂O)contributestothestabilityandsafetyofthebattery.Ithelpsimprovethethermalstabilityofthebattery,reducingtheriskofoverheatingandextendingbatterylife.Manganeseismoreabundantandlessexpensivethancobalt,whichhelpskeepproductioncostsdownwhilemaintainingbatteryperformance.

Graphite(C)isusedastheanodematerial,asinLFPbatteries.Itisessentialforstoringandreleasinglithiumionsduringthebattery'schargeanddischargecycles.Withoutgraphite,theNMC811batterywouldnotbeabletoachievetheefficiencyandreliabilityrequiredfordemandingapplicationssuchaselectricvehicles,whereconsistentperfor-

manceovermanychargecyclesiscritical.

LFPBattery

LFPbatteriesareasmartchoiceforthoselookingtobalancecost,durability,andenvironmentalsustainability.Theyofferreliableperformanceusingbatteryactivematerialsthatareeasiertosourceandmoreaffordable,makingthemsuitableforawiderangeofapplications.

Lithiumcarbonate(Li₂CO₃)isthekeyingredientinLFPbatteries.Itisresponsibleforstoringandreleasingenergy,allowingthebatterytoefficientlypowerdevicesandvehicles.LFPbatteriesspecificallyuselithiumcarbonate(Li2CO3),whichisessentialformakingthebattery'scathode—thepartofthebatterythathelpsmanagetheflowofenergy.Thepurityandavailabilityofthislithiumcompoundiscriticalbecauseitdirectlyaffectshowwellandconsistentlythe

batteryperformsandhowlongitlasts.

Graphite(C)servesastheprimarymaterialforthebattery'sanode,thepartwherelithiumionsarestoredwhenthebatteryisnotinuse.Graphite'slayeredstructureallowsittoeffectivelystoretheseionsandreleasethemwhenneed-ed,contributingtothebattery'sstabilityandensuringsmoothoperationovertime.

1Das,J.;Kleiman,A.;Rehman,A.U.;Verma,R.;Young,M.H."TheCobaltSupplyChainandEnvironmentalLifeCycleImpactsofLithium-IonBatteryEnergyStorageSystems,"Sustainability2024,16,1910.

/10.3390/su16051910

BOSTONCONSULTINGGROUP|POWERINGTHEFUTURE:UNLOCKINGBATTERYELECTRICVEHICLESUSTAINABILITYTHROUGHSTRATEGICBATTERYSOURCING10

Decarbonizationlevers:twokeyleverstophysicallydecarbonizeactivematerials

BothLFPandNMC811batteriesrequiresignificantamountsofrawmaterialsforbatteryactivecomponents.

Theextractionandprocessingofthesematerialsisenergy-intensiveandresultsinsignificant

carbonemissions.Theseemissionscanbereducedeitherbymakingthemanufacturingprocessitselfmoresustainable(physicallygreen),byrecycling,orbybalancingemissionsthroughcarbonaccountingmethods.Thispaperfocusesonlyonthefirsttwoapproaches—analyzingmoresus-tainablesourcingoptionsforproductionandrecyclingmaterials—becausetheydirectlyad

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论