2024-2025学年广东省深圳四校发展联盟体高三下学期线上高考模拟训练数学试题试卷含附加题含解析_第1页
2024-2025学年广东省深圳四校发展联盟体高三下学期线上高考模拟训练数学试题试卷含附加题含解析_第2页
2024-2025学年广东省深圳四校发展联盟体高三下学期线上高考模拟训练数学试题试卷含附加题含解析_第3页
2024-2025学年广东省深圳四校发展联盟体高三下学期线上高考模拟训练数学试题试卷含附加题含解析_第4页
2024-2025学年广东省深圳四校发展联盟体高三下学期线上高考模拟训练数学试题试卷含附加题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年广东省深圳四校发展联盟体高三下学期线上高考模拟训练数学试题试卷含附加题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的部分图象如图所示,则的表达式是()A. B.C. D.2.已知,是两条不重合的直线,是一个平面,则下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则3.已知复数,其中,,是虚数单位,则()A. B. C. D.4.已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为()A. B. C. D.5.已知函数的定义域为,则函数的定义域为()A. B.C. D.6.如图,内接于圆,是圆的直径,,则三棱锥体积的最大值为()A. B. C. D.7.已知是定义在上的奇函数,且当时,.若,则的解集是()A. B.C. D.8.函数的定义域为()A.或 B.或C. D.9.已知集合,则()A. B. C. D.10.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)11.已知函数()的部分图象如图所示,且,则的最小值为()A. B.C. D.12.复数满足,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.关于函数有下列四个命题:①函数在上是增函数;②函数的图象关于中心对称;③不存在斜率小于且与函数的图象相切的直线;④函数的导函数不存在极小值.其中正确的命题有______.(写出所有正确命题的序号)14.已知数列为等差数列,数列为等比数列,满足,其中,,则的值为_______________.15.已知的展开式中第项与第项的二项式系数相等,则__________.16.已知集合,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知某种细菌的适宜生长温度为12℃~27℃,为了研究该种细菌的繁殖数量(单位:个)随温度(单位:℃)变化的规律,收集数据如下:温度/℃14161820222426繁殖数量/个2530385066120218对数据进行初步处理后,得到了一些统计量的值,如表所示:20784.11123.8159020.5其中,.(1)请绘出关于的散点图,并根据散点图判断与哪一个更适合作为该种细菌的繁殖数量关于温度的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表格数据,建立关于的回归方程(结果精确到0.1);(3)当温度为27℃时,该种细菌的繁殖数量的预报值为多少?参考公式:对于一组数据,其回归直线的斜率和截距的最小二成估计分别为,,参考数据:.18.(12分)已知函数.(1)当时,试求曲线在点处的切线;(2)试讨论函数的单调区间.19.(12分)如图,在矩形中,,,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.(Ⅰ)求证:平面平面;(Ⅱ)求直线与平面所成角的正弦值.20.(12分)设函数.(1)求的值;(2)若,求函数的单调递减区间.21.(12分)如图所示,在四棱锥中,∥,,点分别为的中点.(1)证明:∥面;(2)若,且,面面,求二面角的余弦值.22.(10分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.(1)求的值;(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?文科生理科生合计获奖6不获奖合计400(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,,,则,,因此,.故选:D.本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.2.D【解析】

利用空间位置关系的判断及性质定理进行判断.【详解】解:选项A中直线,还可能相交或异面,选项B中,还可能异面,选项C,由条件可得或.故选:D.本题主要考查直线与平面平行、垂直的性质与判定等基础知识;考查空间想象能力、推理论证能力,属于基础题.3.D【解析】试题分析:由,得,则,故选D.考点:1、复数的运算;2、复数的模.4.B【解析】

设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.【详解】设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点,由题意可知,直线与直线垂直,,,因此,双曲线的离心率为.故选:B.本题考查双曲线离心率的计算,解答的关键就是得出、、的等量关系,考查计算能力,属于中等题.5.A【解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.6.B【解析】

根据已知证明平面,只要设,则,从而可得体积,利用基本不等式可得最大值.【详解】因为,所以四边形为平行四边形.又因为平面,平面,所以平面,所以平面.在直角三角形中,,设,则,所以,所以.又因为,当且仅当,即时等号成立,所以.故选:B.本题考查求棱锥体积的最大值.解题方法是:首先证明线面垂直同,得棱锥的高,然后设出底面三角形一边长为,用建立体积与边长的函数关系,由基本不等式得最值,或由函数的性质得最值.7.B【解析】

利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果.【详解】为定义在上的奇函数,.当时,,,为奇函数,,由得:或;综上所述:若,则的解集为.故选:.本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在处有意义时,的情况.8.A【解析】

根据偶次根式被开方数非负可得出关于的不等式,即可解得函数的定义域.【详解】由题意可得,解得或.因此,函数的定义域为或.故选:A.本题考查具体函数定义域的求解,考查计算能力,属于基础题.9.A【解析】

考虑既属于又属于的集合,即得.【详解】.故选:本题考查集合的交运算,属于基础题.10.B【解析】M=y|y=N==x|∴M∩N=(1,2).故选B.11.A【解析】

是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得.【详解】由题意,,∴函数在轴右边的第一个零点为,在轴左边第一个零点是,∴的最小值是.故选:A.本题考查三角函数的周期性,考查函数的对称性.函数的零点就是其图象对称中心的横坐标.12.C【解析】

利用复数模与除法运算即可得到结果.【详解】解:,故选:C本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.①②③【解析】

由单调性、对称性概念、导数的几何意义、导数与极值的关系进行判断.【详解】函数的定义域是,由于,在上递增,∴函数在上是递增,①正确;,∴函数的图象关于中心对称,②正确;,时取等号,∴③正确;,设,则,显然是即的极小值点,④错误.故答案为:①②③.本题考查函数的单调性、对称性,考查导数的几何意义、导数与极值,解题时按照相关概念判断即可,属于中档题.14.【解析】

根据题意,判断出,根据等比数列的性质可得,再令数列中的,,,根据等差数列的性质,列出等式,求出和的值即可.【详解】解:由,其中,,可得,则,令,,可得.①又令数列中的,,,根据等差数列的性质,可得,所以.②根据①②得出,.所以.故答案为.本题主要考查等差数列、等比数列的性质,属于基础题.15.【解析】

根据的展开式中第项与第项的二项式系数相等,得到,再利用组合数公式求解.【详解】因为的展开式中第项与第项的二项式系数相等,所以,即,所以,即,解得.故答案为:10本题主要考查二项式的系数,还考查了运算求解的能力,属于基础题.16.【解析】

解一元二次不等式化简集合,再进行集合的交运算,即可得到答案.【详解】,,.故答案为:.本题考查一元二次不等式的求解、集合的交运算,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)作图见解析;更适合(2)(3)预报值为245【解析】

(1)由散点图即可得到答案;(2)把两边取自然对数,得,由计算得到,再将代入可得,最终求得,即;(3)将代入中计算即可.【详解】解:(1)绘出关于的散点图,如图所示:由散点图可知,更适合作为该种细菌的繁殖数量关于的回归方程类型;(2)把两边取自然对数,得,即,由.∴,则关于的回归方程为;(3)当时,计算可得;即温度为27℃时,该种细菌的繁殖数量的预报值为245.本题考查求非线性回归方程及其应用的问题,考查学生数据处理能力及运算能力,是一道中档题.18.(1);(2)见解析【解析】

(1)对函数进行求导,可以求出曲线在点处的切线,利用直线的斜截式方程可以求出曲线的切线方程;(2)对函数进行求导,对实数进行分类讨论,可以求出函数的单调区间.【详解】(1)当时,函数定义域为,,所以切线方程为;(2)当时,函数定义域为,在上单调递增当时,恒成立,函数定义域为,又在单调递增,单调递减,单调递增当时,函数定义域为,在单调递增,单调递减,单调递增当时,设的两个根为且,由韦达定理易知两根均为正根,且,所以函数的定义域为,又对称轴,且,在单调递增,单调递减,单调递增本题考查了曲线切线方程的求法,考查了利用函数的导数讨论函数的单调性问题,考查了分类思想.19.(Ⅰ)详见解析;(Ⅱ).【解析】

(Ⅰ)根据,,可得平面,故而平面平面.(Ⅱ)过作于,则可证平面,故为所求角,在中利用余弦定理计算,再计算.【详解】解:(Ⅰ)因为,,,平面,平面所以平面,又平面,所以平面平面;(Ⅱ)过作于,则由平面,且平面知,所以平面,从而是直线与平面所成角.因为,,,所以,从而.本题考查了面面垂直的判定,考查直线与平面所成角的计算,属于中档题.20.(1)(2)的递减区间为和【解析】

(1)化简函数,代入,计算即可;(2)先利用正弦函数的图象与性质求出函数的单调递减区间,再结合即可求出.【详解】(1),从而.(2)令.解得.即函数的所有减区间为,考虑到,取,可得,,故的递减区间为和.本题主要考查了三角函数的恒等变形,正弦函数的图象与性质,属于中档题.21.(1)证明见解析(2)【解析】

(1)根据题意,连接交于,连接,利用三角形全等得,进而可得结论;(2)建立空间直角坐标系,利用向量求得平面的法向量,进而可得二面角的余弦值.【详解】(1)证明:连接交于,连接,,≌,且,面面,面,(2)取中点,连,.由,面面面,又由,以分别为轴建立如图所示空间直角坐标系,设,则,,,,,,为面的一个法向量,设面的法向量为,依题意,即,令,解得,所以,平面的法向量,,又因二面角为锐角,故二面角的余弦值为.本题考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要认真审题,注意中位线和向量法的合理运用,属于基础题.22.(1),,.(2)填表见解析;在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关(3)详见解析【解析】

(1)根据频率分步直方图和构成以2为公比的等比数列,即可得解;(2)由频率分步直方图算出相应的频数即可填写列联表,再用的计算公式运算即可;(3)获奖的概率为,随机变量,再根据二项分布即可求出其分布列与期望.【详解】解:(1)由频率分布直方图可知,,因为构成以2为公比的等比数列,所以,解得,所以,.故,,.(2)获

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论