2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-42正式版_第1页
2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-42正式版_第2页
2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-42正式版_第3页
2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-42正式版_第4页
2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-42正式版_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

EnhancingSecurity,Resilience,and

SafetyofSystemswith

GenerativeAITableofSidebar:GenAImodels4GenAIUseCases9IndividualApplications9Self-Awareness10Anomalydetection11Autonomy12Adaptability12Predictivemaintenance13Faultmanagement14Fleet16Swarmintelligence17Swarmcoordination19Communicationresilience21Consensus22Human23Missionplanningandexecution24Human-machineteaming25Meta-learning26Datalabelingsynthesis27Cybersecurity28Malware29Intrusiondetection:31Integratingthreatintelligence33Policymanagement33ThreatSimulation:34Softwaresupplychainvisibility34Challenges34Cost35Compute36Adaptation36Ethical/Regulatory36Alignment36Privacy36Accuracy3737securityissues3838Glossary41Rapidadvancesautonomoussystemsedgeroboticsunlockedunprecedented

opportunitiesinindustriesfrommanufacturingtransportationhealthcareandexploration.

Increasingcomplexityandconnectivityhaveintroducednewchallengesinensuringsecurity,

resilience,andsafety.Asedgerobotsintegrateourdailylivesandcriticalinfrastructures,itis

imperativethatwedevelopinnovativethatcanthesetrustworthiness

andreliabilitynewlevels.ThiswhitepaperexploresthetransformativepotentialofgenerativeAI(GenAI)enhancethe

security,resilience,andsafetyofautonomoussystemsandedgerobots.canusethese

cutting-edgetechnologiesmeettheuniquedistributeddynamicchallengesofedge

robotics,unlocklevelsofintelligence,adaptability,androbustness.GenAImodelsproducenewcontentbyanalyzingpatternsinadataset.Theyderivecharacteristic

probabilitydistributionsandapplythesecreatenewdatapatternsthatareconsistentwiththe

original“real”dataset.EarliergenerationsofdiscriminativeAImodelsappliedconditionalprobabilitiesoutcomesforpreviouslyunseendata.Theapproachisversatileandwell-suitedawiderange

ofproblems,includingclassificationsandregressions.Theyexcelatdelineatingthedecision

boundariesthatdifferentiatebetweenvariousclassesorcategorieswithinthedataset.Thegrowingranksofgenerativetechniquesincludethosebasedontransformersandthe

resultinglargelanguagemodels(LLMs),GenerativeAdversarialNetworks(GANs),Autoencoders(VAEs),GenerativeFlowModelsandGenerativeDiffusionModels(GDM).

ThesehaveallexcitingavenuesofAIresearch—withapplicationsdroneswarms

andintrusiondetection,physicalsecurity,semanticcommunication,andnetwo1TheTechnologyInnovationInstitute’sSecureResearchCenter(TII-SSRC,AbuUAE,https://www.tii.ae/secure-systems)isapplyGenAIitsworkextendingZero

Trustarchitectures(developedforinformationsecurity)everyaspectofinformationsecurityin

cyber-physicalsystems.Thus,SSRCconsidershowGenAIcanhelpguaranteesecurity,resilience,andforswarms,swarmsofswarms,autonomousterrestrialmarinevehicles,commandsystems,human/droneinteractionsandparticularlyinareaswhereGenAIoutperformstraditionalapproaches.Examples•Individualapplications:healthmonitoring,stateestimation,predictivemaintenance,

anomalydetection,self-healing,navigation,andemergencylandings.

•Fleetapplications:Swarmcoordination,intelligence,collectivedecision-making.

•Human/Droneinteractions:communicationresilience,missionplanning,human-

computerinteraction.•Cybersecurityandresilience:Intrusiondetection,malwareclassification,threatsimulation.ThispaperwillfocusondronesSSRCisdoingsomuchworkinthisarea.Whatwe

learnfromdronescanbeappliedmoreautonomousandcyber-physicalsystemsin

general,includingcars,robots,embeddedandsmartcities.Bythesametoken,

lessonslearnedintheseareascanbefoldedSSRC’sresearch.approachallowsorganizationsmoveawayfromphysicaldevicemanagementapproaches

thatrequireemployeescarrymultiplephones.1M.“UnleashingthePowerEdge-CloudGenerativeinMobileNetworks:AAIGCServices.”arXiv,2023.doi:10.48550/arXiv.2303.16129Sidebar:GenAImodelsAsurveyofspecificgenerativeAImodelingtechniques,withtheirstrengthslimitationsas

applieddronesafety,security,andresilience.PopularexcitementovergenerativeAImodelsbeendrivenbyhighlypublicizedlikeChatGPT,whichcreateauthoritative-soundingresponsestextpromptsusingspecially

trainedLLMs.LargeLanguageareAIsystemstrainedonvasttextdatasets.TheyuseDeepLearning

techniques,particularlyastructureknownasaTransformer,“understand”andhuman-liketextbasedonthepatternslearned.LLMsanalyzetherelationshipscontextsinthedata.Theyuseavarietyoftechniquesbuildsimplifiedrepresentations

ofthedata,allowingthemmakeassociationsandcorrelationsbetweenoriginalelements.Thesemodelsletthemcomposeresponsesthatcanmimichumanwritingstylescoverdiversetopics.VisuallikeDALL-EandStableDiffusion,compileimagesfromtext

andimageprompts.LLMsarewidelyused,widelyuseful,increatingcontent,code,translations,summaries,

syntheticdata,structureunstructuredfromtexts,documents,images,andpromptdata.Transformermodelsandtheservicesbuiltonthem—likeOpenAI’sGoogle’sGemini,

andAnthropic’sClaude—attractedwidespreadattention,thankstheirimpressiveability

createarticulate-seemingresponseshumanprompts.These,andotherdomain-specific

LLMsandSmallLanguageModels(SMLs),showpromiseforsupportinganalysis,research,

anddevelopmentimprovedronesafety,securityandresilience.ParallelingtheseveryvisibleAIdevelopments,however,hasbeenalmostadecadeofprogress

onnewclassesofGenerativeAImodelscouldautomateandrepresentation-building.

Whilegenerativeapplicationsattractthemostattentions,thesenewmodelsaredriving

advancesinanalyzingdataandinteractingwiththeworldus.OthergenerativeAI

models—GenerativeAdversarialNetworks,VariationalAutoencoders,GenerativeDiffusion

Models,NormalizingFlowModels—thoughrelativelyunknown,makesubstantial

contributionsdronesecurity,safety,andresilience.TransformerModels:Introducedin2017translatebetweenandtexts,

TransformerModelsatcapturinglong-rangedependenciescorrelationswithin

unstructureddata2Transformersleverageanovel“attentionmechanism”learnthe

connectionsbetweenwordshelpcreateembeddingsautomatically.Priortechniquesrequired

translatingrawtextintoavectorrepresentationusingaseparatemodel.Transformerscanbuild

complexrepresentationsandlearnintricateconnectionsthroughlayeredarchitecture,

manner.,allowingresearchersprocesslargebodiesofunlabeledtextdeveloplarge

languagemodelsbillionsofparameters.Subsequentinnovationssupporteddocument

summarization,composingquestion/answerassociationsacrosslargedatasets,code

generation,in-depthanalysis,intrusiondetection,malwaredetection,translatingcontrol

systeminstructionsacrossroboticarms.Thekeyadvantageisdistillingcontextfrom

complexdatasets.Challengesincludehallucination,longertrainingtime,slowerinference-

building,heaviercomputationrequirements,andlargermodelcomparedother

techniques.2Vaswani“AttentionAllNeed.”arXiv,Aug.2023.doi:10.48550/arXiv.1706.03762.GenerativeAdversarialNetworks(GANs):Theseweredevelopedin2014createrealistic

syntheticnumbers,faces,andanimalimage3GANspittwonetworksagainstother:

oneisrewardedforgeneratingrealisticcontent,andthesecondisrewardedfordetecting

fakecontent.thiscompetition,thegeneratorimprovesitscreateoutputscanfoolthediscriminator.GANsarewidelyusedincontentgeneration.Sincethefirstversions

weredesignedworkwithimages,researchersarenowfindingcreativewaystranslatesuchascodeornetworklogs,intoimagessuitableforprocessing.GANsaregoodfor

realisticsyntheticdatasetsthatcanbeusedimproveautonomoussystemsandcybersecurity

algorithms.They,too,however,sufferfromfailureslikecollapseorcatastrophic3J.Goodfellow“GenerativeAdversarialNetworks.”arXiv,Jun.2014.doi:10.48550/arXiv.1406.2661.VariationalAutoencoder(VAE):VAEswereintroducedin2014improveinferencesdrawn

fromacontinuouslyvaryingdatastream.4Thetechniquehelpsfindefficientwaysrepresent

dataandbecompressdataordetectanomaliesthreats.TrainingVAEsprocess

involvesteachingasetofencodersanddecoderstranslaterawdataintoanintermediatelatent

spacewithadifferentprobabilitydistribution.canbeusedindependentlyapplicationsanomalydetection,designingencodingschemes,dataaugmentation,generation.addition,theyareoftenusedpre-structuredataforotheralgorithms,GANs,improvetheirresults.GenerativeDiffusionModel(GDF):emergedin2015improvelearning,sampling,

inferences,andevaluationsthatwereinformedbynon-equilibriumthermodynamicsmodeling5

Thetechniqueaddsnoiseasampleanimage)andautomatesthedenoising

processrevealthedata’sstructure.Slightvariationsleaddatasets.arewidelyusedinimagegenerationandcanimprovesignalclassificationvariousdroneusecases.However,thetechniquerequireshighersamplingdemands

amorecomplexarchitectureGANsandNormalizingFlow(NFMs):Thesewereintroducedbyresearchersmakecomplex

datasimplerworkwith6Thesemodelstakeeasy-to-understanddistributions,likeanormalbell

curve,andtransformthemstepbystep.Eachstepisreversible,meaningwealwaysgothestartifneeded.Thisprocess,calleda“”movesfromasimplebeginninganend4D.andM.Welling,“Auto-EncodingVariationalBayes.”arXiv,Dec.2022.10.48550/arXiv.1312.6114.5Ling,et"Diffusionmodels:Acomprehensivemethodsandapplications."ACMComputingSurveys56.4(2023):1-39./doi/10.1145/3626235

6Ivan,SimonJDPrince,MarcusA.Brubaker."Normalizingflows:introductionandreviewcurrentmethods."IEEEtransactionsonpatternanalysisand

intelligence43.11(2020):3964-3979./abstract/document/9089305/authorsresemblesthecomplicatedtargetdataset.Bydoingthis,itispossiblestudyandusethedata

moreeffectively.NFMshavebeenusedgeneratehandwrittennumbers,images,etc.Newer

usecasesincludeenhancedclassificationencodingschemes.Thetrainingprocessamodelthattransformstheprobabilitydistributionofadatasetacomplex,fully

reversibledistribution.NFMscan,however,requirehighercomputationandtrainingtimesthan

techniqueslikeGANsVAEs.ThefollowingfiguresummarizesthemainTechniquestheirapplicationsthefield

ofZeroTrustforautonomoussystems.GenAIUseTheproliferationofdrone-technologyhasbroughtchallengesspanbetweendomains

—individual,fleet,humancontrol,cybersecurity.Theirgrowthandcomplexitydemand

constantinnovationredoubletheirtrustworthinessandreliability.Thefollowingapplications—whetherderivedfromUnmannedAerialVehicle(UAV)anddrone

researchorimportedfromotherdomains—importantimplicationsforthefutureofUAVsand

otherautonomoussystems.too,thatmanyoftheseareearly-stageprojects,includedgiveaflavorwhatGenAItoolsmightaccomplishastechniquesevolve.本报告来源于三个皮匠报告站(),由用户Id:673421下载,文档Id:490694,下载日期:2025-01-23GenAIshowstremendouspotentialforimprovingZeroTrustframeworksenhancesecurity,

resilience,andsafetyinindividualautonomoussystems,suchasdrones,self-drivingcars,

robots,andembeddedsystems.Usecasesunderinvestigationincludeboostingself-

awareness,anomalydetection,autonomousdriving,predictivemaintenance,faultmanagement,

self-healing,andlandingsafely.Self-AwarenessOpportunity:Efficientlytranslatenoisy,blurry,andinconsistentdataunderstandthedrone's

currentstate—e.g.,compensatingformotionblurwhiletryingdetectobstacles.

Thefoundationofdronehealthisaccuratelycapturingandofitscurrentstate—

includingtheconditionofitscurrenthardware,itsapplications,itsphysicallocation,securityposture.theworld,thiscanmessy,asvideofeedsmotionblur,datajitters,inertialguidancelosecalibration,andnoiseorgapsdegradeinternaldata.Stateestimationiscrucialautonomousnavigationanddecision-making,andrawdatastreams

mustbeaccuratelycorrelatedwithposition,velocity,andorientation.7GenerativeAIcanhelpfill

inmissingdataandfusefrommultiplesourcesimprovestateestimation.8InnovationsGenAIalgorithmslikeGANs,VAEs,andtraditionalMLalgorithmslikeLSTMfillingaps,preservingvehiclefaultdetection,predictivemaintenance,managementandsafe-landingprotocols.Forexample,innovativeapproachescanmissingandmakeiteasierfusestreamscreateamoreaccuratestate

assessment9helpcorrelatedatawithacousticanalysis,10andidentifymechanicalissue11Researcherstechniquesforgeneratingestimated-

statevariablesusingConditionalGANsforindividualdronesdroneswarms.127T.D.Barfoot,Stateestimationforrobotics.CambridgeUniversityPress,2017.8Guangyuan,NguyenVanHuynh,HongyangDinhThaiHoang,DusitNiyato,KunZhu,JiawenKang,ZehuiJamalipour,andDongInKim.“GenerativeUnmannedVehicleSwarms:Challenges,ApplicationsandOpportunities.”arXiv,February28,/10.48550/arXiv.2402.18062.

9Chai,andZ.approachstateestimationgenerativeadversarialnetwork,"inIEEEInternationalConferenceonMan(SMC),2019,2248-/document/891458510Wang,Vinogradov,“ImprovingtheperformanceconvolutionalhistoryensembleforunsupervisedearlydetectionwithacousticemissionsignalsSci.,(5)(2023),p.3136,10.3390/APP1305313611Zheng,Farahat,andC.Gupta,“GenerativeAdversarialNetworksforFailurePrediction.”arXiv,04,2019.Accessed:Mar.15,2024.[Online].Available:/abs/1910.0203412He,C.X.Tian,andW.Zeng,"AtwofoldSiamesenetworkforreal-timetracking,"inProceedingstheIEEEconferenceoncomputervisionpattern

2018,pp.4834-4843./document/8578606AnomalydetectionOpportunity:Improveanalysisofdronesensordataidentifyabnormalconditions.

Moreaccurate,multi-dimensionalsystem-staterecordscanalsohelpidentifyanomaliesrelevant

dronehealth.Forexample,VAEscanimprovefaultdetectionisolation.Theycanidentifythewarningsignsofstressinsystems,prioritizepredictiveschedules.Typically,machine-learningclassificationalgorithmstrainedonclasses

(suchastagged“faulty”faulty”).onclasses,suchasdata,isoften

scarceinpublicdatasetsandtherealworld.thesecases,GenerativeAdversarialNetworks

(GANs)canbevaluablesynthesizingtheseclasses—making“faulty”datathatlooks

conditions.addition,researchersareexploringhowcouldhelpbettercontextualizeoperatenewenvironments.13Forexample,DriveLLMcombinesLLMtraditionalautonomousnavigationalgorithmssupportbetterreasoningdecision-makingwhenrespondingedgecases.14Researchers

foundthemethodcouldimproveproactivedecision-makingunexpectedcircumstances.

Anotherapplication,TypeFly,enhancescommunicationbetweenhumansanddronesthrougha

naturallanguageinterface15.Suchlargelanguagemodelsmay,however,manifestsurfacebias,inaccuracies,and

hallucinationissuesthatrequireadditionalsafeguards.Similarly,MicrosoftResearchdiscusses

theiradvancementsinintegratingwithroboticsmakerobotcontrolintuitive

throughnaturallanguage.They'veenabledunderstandexecutetasksin

physicalenvironments,whichfacilitateseasierhuman-robotinteractionwithouttheneedfor

complexprogrammingknowledge.Theteamhasdevelopeddesignprinciplesfor

languagemodelsroboticstasks(involvingspecialpromptingstructureshigh-level

APIs),andtheyhavedemonstratedhowcanhandletasksoperatingdronesrobotarmsthroughuser-friendlycommandsfeedback.Thedevelopersemphasizethe

importanceofsafetyandsimulationtestingbeforereal-worldapplication16AdaptabilityOpportunity:Improvetranslationofautonomoussystemssoftwarerunacrossdifferenthardwaremakes,models,andconfigurations.Autonomoussystemcontrollersmustbetrainedforaspecificmodelconfiguration.Thiscan

createchallengeswhenupgradingindividualcomponentsoradoptingnewmodels.RTXisarobot

controlthattranslatecontrolpoliciesmanagedifferentroboticarmswithoutthecontrolalgorithmsforthelatesthardware.sometests,leveragingtheexperienceofcontrollers,producedcontrolpoliciestheoutperformedthebestcontrolscustom-builtforan

individuala1713Lei,surveyonlargelanguagemodelautonomousagents."FrontiersComputerScience18.6(2024):1-26./article/10.1007/s11704-024-40231-114“DriveLLM:ChartingthePathTowardFullAutonomousDrivingWithLargeLanguageModels,”IEEETransactionsIntelligentVehicles,vol.pp.1450–Jan.2024,doi:10.1109/TIV.2023.3327715.15Chen,Guojun,XiaojingYu,Zhong."TypeFly:FlyingwithLargeLanguageModel."arXivpreprintarXiv:2312.14950(2023)./pdf/2312.14950

16Vemprala,Sai,et"Chatgptforrobotics:Designandmodelabilities."arXivarXiv:2306.17582(2023)./abs/2306.17582

17X.-Collaborational.,“OpenX-Embodiment:RoboticDatasetsandRT-XarXiv,Dec.17,2023.10.48550/arXiv.2310.08864.EarlyLLMs,likeGPT3.5,weretrainedonlargebodiesoftextscrapedfromtheInternet.These

modelslackedreal-worldexperiencethatcouldreflecthowvariousconfigurationsofrobotsotherautonomoussystemsmakeandexecutedecisions.Researchintoroboticaffordances

exploreshowconstrainrobotmodelactionsthatarefeasibleandappropriateforcapabilities.18ThisprovidesaframeworkforguidingLLMdevelopmentbasedonmorecomplete

knowledgeofanoperationorprocedure.Atthesametime,thefunctiontranslateshigh-levelknowledgeintoexecutionbyaparticularrobotmodelinaspecifictargetenvironment.PredictivemaintenanceOpportunity:Predictthependingbreakdownofdronecomponentsoptimizemaintenance,repair,part-replacementschedules.Properlyandanalyzed,thedrone’ssensoroperationaldatarevealmechanicalproblemsbeforebreakdownsoccur.Predictivealgorithmsmaintenanceandrepair

crewsestablishregularschedules,prioritizemaintenance,andstayaheadofpartsinventories.

advancenoticeandplanning,evenmajorrepairsandreplacementscanbeperformedduring

routineservice.Theprobabilitiesofcostlybreakdownsand,worse,catastrophicfailuressharply.Partscanbereplacedjust-before-needed,withservicelifecalculatedasafunctioninstalled-partquality,servicetime,andoperationalprofile—slashingthecostsofreplacing

perfectlysoundonafixedschedule.TraditionalMLalgorithmsoftenlieattheheartofpredictivemaintenance.Forexample,metrics

likeRemainingUsefulLife(RUL)HealthIndicatorscanidentifymotoranomalies.But

syntheticdatageneratedbyGANsandotherGenAIalgorithmscanimprovethealgorithms’

performance.MultipleMLtechniques,includingGenAIalgorithms,canbecombinedimprovefaultandpredictivemaintenanceworkflow19Forexample,techniquesbeenappliedacousticsignalsfrommachineryidentifyandpredictfaultsnotidentifiedbyothermethods.20

GANshavealsobeengeneratesyntheticmonitoring-datasetshelpotheralgorithmsimprovefailure-predictionandoptimizemaintenanceschedules.21GAN-FP,genetic

adversarialnetworksforfailureprediction,specializeingenerating,balancing,andtrainingdataimproveperformanceofotherMLalgorithms22.FaultmanagementOpportunity:Identifyfaults,makedynamicadjustments,andeffectasafelandingwhenrequired.18M.Ahn“DoICan,ISay:GroundingLanguageinRoboticAffordances.”arXiv,16,2022.Accessed:Mar.22024.[Online].Available:/abs/2204.0169119Z.Mianal.,“Aliteraturereviewoffaultensemblelearning,”EngineeringApplicationsofArtificialIntelligence,vol.Jan.2024,10.1016/j.engappai.2023.107357.Wang,VinogradovImprovingperformanceofconvolutionalhistory-stateensembleunsupervisedearlyfaultdetectionwithacousticemissionsignals

Sci.,(5)(2023),p.3136,10.3390/APP13053136H.Wang,J.Zhao,andX.“AMaintenance-predictionMethodforAircraftusingGenerativeAdversarialNetworks,”inIEEE5thInternational

onComputerandCommunications(ICCC),Dec.2019,pp.225–doi:10.1109/ICCC47050.2019.9064184.

Zheng,Farahat,andC.Gupta,“GenerativeAdversarialNetworksforFailurePrediction.”arXiv,04,2019.Accessed:Mar.15,2024.[Online].Available:

/abs/1910.02034GenAImodelscantransformdataforotherMLimprovefaultdetectioninautonomous

systems.Forexample,VAEscanhelpcompressoperationaldatarepresentationsforlongshort-termmemorynetworks(LSTN),atypeofrecurrentneural

netwo23Spatio-temporaltransformercancapturetrendsanddimensionsacross

differenttimescalesimprovebatterydiagnosisfailureprognosis,enhancingpredictive

maintenanceforUAVs.Forexample,thesystemcanspotsubtlechangesinvisibleearlierMLtechniques)thatsignalimpendingbatteryfailureasmuchas24hours

beforethebatteries.24GANshavebeenusedgeneratetrainingsamplesandbuildinferencenetworksforaircraft-

enginemonitoringimprovefailurepredictionsofotherMLalgorithms.25

ResearchershavecombinedVAEsandLSTMsupportcontinuouslearningfromvehiclesensor

data,generatingsyntheticdataforwiderrangesoffaultscenarios.BytrainingotherMLalgorithms

onthisofsyntheticdata,Sadhuetachievedaccuracyindetectingfaultsaccuracyinclassifyingthem.Demandsforcomputingpowerrelativelyslowexecutionspeedaretopconcernswhen

runningthesekindsofalgorithmsonlow-costhardware.Oneisportthecomputations

whicharemorepower-efficientthanGPUs.ThisishowSadhuetal.achievedaspeedup(athalfthepowerconsumption)forVAE-LSTMfaultdetectionalgorith26

VAEscanalsobeusedtrainmodelsthatidentifynormaloperation.Usingthistechnique,Dhakl

etal.achieveda95.6%accuracyindetectingdeviationsindicativeoffaultsandanomaliesrepresentedinthetrainingset.27Whenaproblemarisesinadroneoritscommunicationsnetwork,thedronemustlandsafelyavoidsecondarydamage.thisMonteCarloalgorithmshavebeencalculate“targetlevelsofsafety”(levelsofacceptablerisk)forvariouslandingzone28

Techniqueslikethiscouldbecombinedwithtransformersmakecontext-awaredecisionswhen

afaultforcesaUAVsystemselectanappropriatelandingzone.thefuture,itmayalsobepossibleGenAItechniquestransformersletself-healinresponsehardwarefailures,softwarebugs,ornetworkdisruption.Forexample,

Khlaisamniangetal.proposedaforusingdetectanomalies,generate

code,debugit,andcreatereportsoncomputersystems.29Althoughstillinitsearlystages,this

worksuggestsdirectionsforfutureresearchonotherautonomoussystems.23Han,A.L.Ellefsen,F.T.Holmeset,H.Zhang,“FaultDetectionWithLSTM-BasedVariationalAutoencoderMaritimeComponents,”IEEESensorsvol.19,pp.2190321912,2021,doi:10.1109/JSEN.2021.3105226.24J.Zhao,Feng,J.Wang,Lian,M.Ouyang,andF.Burke,"Batteryfaultdiagnosisandfailureprognosisforelectricvehiclesspatio-temporaltransformernetworks,"

AppliedEnergy,vol.25H.Wang,J.Zhao,andX.“AMaintenance-predictionMethodforAircraftusingGenerativeAdversarialNetworks,”inIEEE5thInternational

onComputerandCommunications(ICCC),Dec.2019,pp.225–doi:10.1109/ICCC47050.2019.9064184.26Sadhu,andD.Pompili,“On-BoardDeep-Learning-BasedUnmannedAerialFaultCauseDetectionandClassificationviaFPGAs,”IEEETransactionsvol.no.4,pp.33193331,2023,doi:10.1109/TRO.2023.3269380.27R.Dhakal,C.Bosma,Chaudhary,andN.Kandel,"UAVfaultandanomalydetectionusingautoencoders,"inProceedingsIEEE/AIAADigitalAvionicsSystems

Conference.IEEE,2023,pp.1-8.28Tong,Gan,L.Yu,andH.Zhang,“EvaluationTargetofUnmannedVehicleinFusionAirspace,”inIEEEInternationalConferenceArtificialIntelligenceandComputerApplications(ICAICA),Jun.pp.37510.1109/ICAICA54878.2022.9844489.29Khlaisamniang,P.Khomduean,Saetan,Wonglapsuwan,GenerativeAIforSelf-HealingSystems.2023,10.1109/iSAI-NLP60301.2023.10354608.FleetGenAIcanhelpimproveswarmintelligence,swarmcoordination,andtherobustness,security,

andefficiencyofunderlyingcommunicationsnetworksattheleveloforswarmsof

autonomousthings.thiscontext,ZeroTrustsecurity,safety,andresilienceintoplay—

protectingdronefleets,improvingtheintegritysharedsensing,facilitatingbettercoordination,

andreducingtheimpactofacompromiseddroneonthefleetasawhole.SwarmintelligenceOpportunity:Improvetrustworthyfusionofsensordatafrommultipleindividualsinaswarm.

Overthepastdecade,researcherspublishedtensofthousandsofpapersonsynthesizing

unifiedsituationalviewsbyfusingfromnumerousdronestogether.Supposethata

dronefleetissurveyingalarge-scaledisasterafloodorafire.Ideally,trustworthyswarm

intelligencecaninformationfrommemberoftheswarmpaintacomprehensive

pictureofthesituation.GenerativeKnowledge-SupportedTransformers(GKSTs),forexample,canfuseimageryfrom

differentviewsofatargetobject,producingmoremeaningfulimagesfromamovingvehicle.30

Furtherenhancementsofthismulti-viewapproachmightimprovetheinterpretationofcollectedfromthedifferingperspectivesofmembers.importantappreciatethattheremanywaysofrepresentingtheworld,different

approachesmaybesuitablefordifferentpurposes.Forexample,similarityclassification

algorithmscanhelptheobjectfeaturesinimagery.contrast,semantic

categorizationalgorithmslabeltheseasmembersofspecificcategoriesorclasses.

SA-SIAM(atwo-foldSemantic-Appearanceneuralnetwork)sharesinformationacross30Yu,W.Liao,C.Qu,Q.andZ.Xu,“UAVCooperativeSearchMulti-agentGenerativeAdversarialImitationin2022InternationalConferenceon

Learning,CloudComputingandIntelligentMining(MLCCIM),Aug.pp.441446.doi:10.1109/MLCCIM55934.2022.00081.separateneuralnetworks,onetrainedonSemanticinformation,theotheronAppearancedata.31

TheSemanticsideusesattentionmechanismhelpinterpretdatabasedonthetargetadditionalcontextualinformation.Althoughthisnotafull-generativeAIimplementation,itshows

howamoretargetedattentionmechanismintransformerscanbeappliedotherusecasesina

moretargetedway,whichmaybeefficientthanafull-blownLLMimplementation.ConditionalGANs(CGANs)—variantsofGenerativeAdversarialNetworksbasedspecific

conditions—beenusedformotionprediction.Thesepredictionsconsidereachobject's

relativemotionitschangingorientationrelativeaUAV.32Theseworkinconjunctiona

Siamesenetwork,inwhichneuralaresharedacrossapairofcomplementarynetworks.Thoughtheinitialresearchfocusedonindividualdrones,theworksuggestsafuture

pathforsynthesizing3Dviewsofsituationscontributionsacrossafleet.2016,researchersexploreda“socialpooling”layercouldhelpautonomousagentsmodel

theinteractionsofpeopleproximity,usingseparateLSTMnetworkspredictperson’s

motion33thiscase,theresearcherswerelookingatanautonomouscouldplanitspaththroughgroupsofindependentlymovinghumanbeings.Futureresearchexplorehowsocialpoolingcouldextendimprovemodelsthatallowdronesunderstand

currentlocationsandpredictfuturepositionsofnearbydrones,bystanderdrones,andoutsideradversarydrones.Text-to-image-baseddiffusionmodelsalsobeenusedgeneraterealisticimagesofUAVs

invaryingscenarios,improvingalgorithmsfordetectingUAVsby12%.Theresearcherscombined

normalizedmod

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论