




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本科生毕业设计(论文)题目:花园煤矿1.8Mt/a新井设计综采放顶煤工作面采出率分析及提高措施摘要本设计包括三个部分:一般部分、专题部分和翻译部分。一般部分为花园煤矿1.8Mt/a新井设计。花园煤矿位于山东省济宁市金乡县,交通便利。井田走向(东西)长度最大约为5.454km,最小约为3.868km,倾斜(南北)长度最大约为3.252km,最小约为1.905km,总面积为13.97km2。主采煤层为15#煤,煤层倾角为6~18,平均总厚度为12m。井田地质条件较为简单。井田工业储量为172.53Mt,可采储量为114.5Mt。矿井设计生产能力为1.8Mt/a。矿井服务年限为49a,涌水量不大,矿井正常涌水量为86m3/h,最大涌水量为99.7m3/h。矿井瓦斯相对涌出量为1.732m3/t,绝对涌出量为6.866m3/min,为低瓦斯矿井。井田开拓方式为立井单水平开拓。采用胶带输送机运煤,采用矿车进行辅助运输。矿井通风方式前期为中央并列式通风,后期增设2号风井通风。矿井年工作日为330d,工作制度为“三八”制。一般部分共包括10章:1、矿区概述与井田地质特征;2、井田境界和储量;3、矿井工作制度、设计生产能力及服务年限;4、井田开拓;5、准备方式—带区巷道布置;6、采煤方法;7、井下运输;8、矿井提升;9、矿井通风与安全;10、设计矿井基本技术经济指标。专题部分题目是综采放顶煤采煤工作面采出率分析及提高措施,主要分析了综放工作面煤炭损失及如何提高采出率的方法,从工程实例分析了煤层注水软化致裂技术与深孔预裂爆破技术效果。翻译部分主要内容关于顶板软岩对回采巷道稳定性的影响,英文题目为:SOMEOFOUREFFORTSONTHEIMPROVEMENTOFMININGSAFETYANDTHERELIABILITIESOFMININGMACHINERIES。关键词:立井;单水平;采区;中央并列式;中央分列式;综采放顶煤ABSTRACTThisdesignincludesthreeparts:thegeneralpart,thespecialsubjectpartandthetranslationpart.Thegeneralpartisa1.8Mt/anewdesignforHuanyuancoalmine.HuanyuanislocatedinJinxiangofShandongprovince.Itisveryconvenienttogettothemineintermsofbothhighwayandrailway.Themaximumlengthofthecoalfieldis5.454km,andtheminimumlengthofthecoalfieldis3.868km,Themaximumwidthofthecoalfieldis3.252km,andtheminimumlengthofthecoalfieldis1.905km,andthetotalareais13.97km2.Thefifteenarethemaincoalseams,anditsdipangleis6~18degree.Thethicknessofthemineisabout3.43minall.Thegeologicstructureofthiscoalfieldissimple.Therecoverablereservesofthecoalfieldare172.53milliontons,andtheminablereservesare114.5milliontons.Thedesignedproductivecapacityis1.8milliontonspercentyear,andtheservicelifeofthemineis49years.Thenormalflowofthemineis86m3perhourandthemaxflowofthemineis99.7m3perhour.Therelativeminegasgushis1.732m3/tandtheabsolutegushis6.866m3/min,soitisalowgasmine.Themineisadoublelevelstodevelop.ThecentrallanewayusesBeltConveyortotransitcoal,andtrolleywagonsareusedforaccessorialtransportationintheroadway.Theprophaseventilationmodeofthismineiscenterjuxtaposeform,andthelateventilationmodeofthismineisdiagonalform.The“three-eight”workingsystemisusedintheTunliumine.Itproducesfor330daysayear.Thedeneraldesignincludestenchapters:1.Anoutlineoftheminefieldgeology;2.Boundaryandthereservesofmine;3.Theservicelifeandworkingsystemofmine;4.developmentengineeringofcoalfield;5.Thelayoutofpanels;6.Themethodusedincoalmining;7.Undergroundtransportationofthemine;8.Theliftingofthemine;9.Theventilationandthesafetyoperationofthemine;10.Thebasiceconomicandtechnicalnormsofthedesignedmine.Thetopicofspecialsubjectpartiscrossminingdriftwallrockdeformationregularityandsupportingtechnicalanalysis,thepaperanalyzestheacrossadoptdriftwallrockdeformationandthefactorsaffectingthedeformationregularity,andfromacrosstheroadwaydeformationcausedbymining,analysesthefactorsinrecentyearsinthecrossofroadwaysupportingtheoryandtechnology,fromengineeringexampleanalyzedthegruntingreinforcementtocrossminingroadwayeffect.TranslationpartisaboatLmprovementofMiningSafetyandtheReliabilitiesofMiningMachineries.TheEnglishtitleis“SomeofOurEffortsontheLmprovementofMiningSafetyandtheReliabilitiesofMiningMachineries”.Keywords:Verticalshaft;Singlelevel;District;Centralabreast;Centralboundary;Fullymechanizedminingwithsublevelcaving.英文原文SOMEOFOUREFFORTSONTHEIMPROVEMENTOFMININGSAFETYANDTHERELIABILITIESOFMININGMACHINERIESAbstract:Toimprovethesafetyofcoalmineandthereliabilitiesofminingmachineriesisthemainaspectofpresentscientificresearch.Thispaperintroducessomeofeffortsandachievementsinthisfield.Theyare:(1)Theselectiveearthleakageprotectionof6KVundergroundpowersupplysystemwithinsulatedneutral;(2)Thedetectionofminemethaneandpowersupplytrippingdevice;(3)Theprotectionagainstthehazardofundergroundstaticelectriccharge;(4)Theresearchofreliabilityoftheshearermotor;(5)Thetestandimprovementsofthereliabilitiesofminingmachineries.INTRODUCTIONInthelast50or60yearsthecoalminingindustriesallovertheworldmadegreatadvancesinmechanizationandsafety.Ourcountryhadalsolargeimprovementsinthesefields,butlargeamountsofworkshavetobedone.Recentlytheproblemofreliabilitiesofminingmachineriesdrewmuchattentionsofmanycountriesandwasconsideredasthemaindirectionofminingresearch.Formorethanadecade,inthesametimeofimprovingthedegreeofmechanizationofourcoalmines,weworkedalsoonminesafetyandreliabilitiesofminingmachineriesandgotsomeachievements.Letmemakesomesimpleintroductiononthem.NumericalmodellingoftheeffectsofweakimmediaterooflithologyoncoalmineroadwaystabilityAbstract:ThestabilityandassociateddesignofroofreinforcementrequirementsoftunnelsdriveninUnitedKingdom.CoalMeasuresstrataisdirectlyrelatedtotheengineeringcharacteristicsoftheimmediaterooflithologyandtheeffectsofredistributionofthein-situstress.Numericalmodellingcarriedoutbytheauthorshasbeenusedtosimulatethewidelyobserveddetrimentaleffectsofbothhighhorizontalstressandweakimmediaterooflithologyontunnelroofstability.Differentnumericalmodellingtechniques,suchascontinuum,discontinuumandhybridfiniteelement-discreteelementcodes,havebeenusedtomodelthedeformationalbehaviourofCoalMeasuresstrataandarediscussedinthecontextofspecificcaseexamplestohighlighttheirapplicationandsuitabilityformodellingofweakrock.Themodelledresultsdemonstratethatthethicknessoftherelativelyweakmudstoneintheroofofthetunnelhasasignificantinfluenceontheextentoffailureand,ultimately,theneedforadditionalreinforcement.1.IntroductionUntilrecently5minesworkedtheBarnsleyseamintheSelbyComplex(Wistow,Stillingfleet,Riccall,WhitemoorandNorthSelby).Theseamdipsatapproximately7°totheNorth-East,rangingindepthfrom250mWestoftheWistowMinetoinexcessof1200mEastoftheNorthSelbyMine.Typicalseamthicknessvariesfrom3.5mintheWestto1.8mintheEastoftheSelbyCoalfield.Theroofstratatypicallyconsistofanimmediate,relativelyweakmudstone(upto1mthick)overlainbymorecompetentsiltymudstones,siltstonesandsandstones.ThemudstonethicknessvariesacrosstheCoalfield,rangingfromnon-existentduetohighenergydepositionalriverchannelswherethesandstoneliesdirectlyabovetheseamtoanextensivethicknessofgreaterthan4m.Typicaltunnelorroadwaydimensionsare3.5mhighby5.0mwide.ThesuccessfulimplementationandsubsequentuseofroofboltinginUnitedKingdomcoalminetunnelshaveprovidedalargedatabaseoftunneldeformationmonitoringinformation,includingin-situmeasurementofstratabehaviour,tunneldeformationandreinforcementperformance.Kentetal.(1999)providedasummaryoftheanalysisandinterpretationofdeformationmonitoringdatafromacrosstheSelbyComplexduringtheperiod1988to1994.ThedatabaseprovidedanidealopportunitytoinvestigatehowgeologicalandstressvariationsaffectthestabilityanddeformationalbehaviouroftunnelsdriventhroughCoalMeasuresstrata.Thedatawereestablishedfortunnelsondrivage,priortofaceretreatandanyadditionaldeformationassociatedwithlongwallextraction.DetailedanalysisofthedatabaseconfirmedthatthestabilityandassociateddesignofroofreinforcementrequirementsoftunnelsdriveninUnitedKingdomCoalMeasuresstrataisdirectlyrelatedtothelithologyoftheimmediateroofoftheexcavationandtheredistributionofthein-situstresscausedbycreationoftheexcavation(Hurt(1992),Kent(1996),Kentetal.(1999)andSiddallandGale(1992)).Forexample,significantincreaseintunnelroofdeformationisobservedwhenexcavationsaredrivenperpendiculartothemaximumhorizontalprincipalstressdirection.Tunnelsdrivenatanangletothein-situstressfieldsufferasymmetricaldeformation,withpronouncedobservedstresseffectsthatrequireadditionalreinforcementforstability.Theseobservedeffectsincludetheformationof“guttering”orexcessivebulging/bulkingoftheimmediateroof.Thethicknessoftherelativelyweakmudstoneintheroofofthetunnelhasasignificantinfluenceontheextentoffailureand,ultimately,theneedforadditionalreinforcement.Recentnumericalmodellingcarriedoutby,orundertakenaspartofresearchsupervisedbytheauthorsoverthelastfifteenyearshasprovidedawiderangeofcaseexamplesanddifferentapplicationsofuseofnumericalmethodstomodelweakrockbehaviour.Thishasinvolvedtheuseofacombinationofcontinuum,discontinuumandhybridmethods,wherethechoiceofthenumericalmethodadoptedtookintoconsiderationthecapabilitiesandlimitationsofthesoftware.Thefactorsconsideredincluded:choiceofappropriateinputparameterssuchasmaterialconstitutivecriteria,whetherthereisaneedtomodeldiscontinuitybehaviour,whatfailuremechanismisbeingsimulatedandwhetherornotthereisaneedfortwoorthree-dimensionalanalysis.Themodellinghasbeenusedtosimulatethewidelyobserveddetrimentaleffectsofbothhighhorizontalstressandweakimmediaterooflithologyontunnelroofstability,usingspecificcaseexamplestakenfromtheSelbyCoalfield.Thedetrimentaleffectsofweakrooflithologyontunnelroofbehaviouraredemonstratedusingboth2and3-dimensionalnumericalmodelling.Theexamplesconcentrateonthemodellingoftunnelroofbehaviour,includingfractureinitiationandsubsequentpropagationofthefracturezoneintheimmediateroofoftheexcavation.2.Numericalmodelling:availablemethods—theiradvantagesanddisadvantagesTable1providesasummaryoftheadvantagesandlimitationsofthemostcommonlyusednumericalmethodsformodellingoftunnelroofbehaviour,whicharecontinuummethods,discontinuumordiscretemethodsandhybridcontinuum/discretemethods.ExamplesoftheapplicationofthesedifferentnumericalmethodstomodellingtheeffectsofrockfailurearoundundergroundexcavationsincludeAlvarez-Fernandezetal.(2009),BartonandPandey(2011),Cogganetal.(2003,2006),Curranetal.(2003),Eberhardt(2001),Galeetal.(2004),Islametal.(2009),IslamandShinjo(2009),MartinandMaybee(2000),Pineetal.(2006)UnverandYasitli(2006)andZipf(2006).2.1.ChoiceofavailablemethodsSuccessfulapplicationofthevariousmethodsavailableformodelingofcoalmineroofbehaviourrequiresasoundknowledgeofthecapabilities,advantagesandlimitationsofthevariousmethodsused.Alvarez-Fernandezetal.(2009),Islametal.(2009),IslamandShinjo(2009)andUnverandYasitli(2006)haveshownhownumericalmodellingtechniquescanbeusedtosimulatecoalstratadeformation.Cassieetal.(1999),Clifford(2004),Garrett(1997),Meyer(2002),Sharpe(1999)andSharpeetal.(1998)havealldemonstratedhownumericalmodellingcanbeusedtoprovideguidanceforreinforcementdesignincoalmineroadwaysintheUnitedKingdom.Itisimportanttomatchthecapabilitiesofthesoftwaretotheengineeringsituationbeingmodelled.Forexample,relativelysimplisticboundaryelementmodellingcanprovideusefulsimulationofstressredistributionandcoalstratadeformationaroundcoalmineroadways(IslamandShinjo,2009),butmoresophisticatedmodelsarerequiredtomodelthedetrimentaleffectsofprogressiverockfailureandfracturebehaviour(UnverandYasitli,2006).ResearchsummarisedbyClifford(2004)highlightstheuseofaboundaryelementapproachtoinitiallymodelthethree-dimensionalstressredistributionaroundacoallongwallpanelbeforeundertakingmoredetailedtwo-dimensionalfinitedifferencemodellingofroadwaybehaviour.Thestressoutputfromtheboundaryelementmodelisusedasinputforthesubsequenttwo-dimensionalcontinuummodelling.Thishighlightsthatresultsfromacombinationofmodelingmethodsmayprovideusefulinsightforaparticularproblembeingmodelled.Itisoftenbeneficialtoadoptamodellingphilosophywherebysimplemodelsareinitiallydevelopedtounderstandthemechanicsandimportantcriticalfactorsinfluencingthedesignpriortoundertakingmoresophisticatedmodels.Modelledoutputshouldalsobevalidatedagainstin-situobservationsand,whereavailable,datafromdeformationandstressmeasurementsfromappropriateinstrumentation.Oncetheappropriatemethodhasbeenchosenthenextkeypartofasuccessfulnumericalmodellingstrategyisthecorrectchoiceofsuitableinputparameters.2.2.ChoiceofinputparametersThedeterminationofinputparametersfornumericalmodellingisnotatrivialtask.Table1highlightsthatasmodelsbecomemorecomplexanimprovedunderstandingofconstitutivecriteriaandassociatedinputsisrequiredtotakefulladvantageoftheincreasedmodelcapability.Obtainingrepresentativeinputparametersisessentialforsuccessfulmodelling,particularlywhenscalingpropertiesfromlaboratorytoin-situorrockmassscale.Variousapproachesareavailableforscalingofrockmassproperties.Theseinclude:•Scalingoflaboratorytestdata—intactrockstrengthpropertiesareadjustedusingreductionorscalingfactors,suggestedbyWilson(1983)forapplicationtoUnitedKingdomcoalenvironments,•Useofpeakandresidualstressversusstraindataasinputforvariousconstitutivecriteriaincludingcohesionweakening,cohesionsofteningfrictionhardeningandubiquitousjointapproaches(FangandHarrison(2002),Hajiabdolmajidetal.(2002),Meyer(2002),Sharpe(1999)),•UseofGSI-basedHoek–Brownformulations(HoekandBrown(1997),Pineetal.(2006)andUnverandYasitli(2006)),•Useofadiscretefracturenetwork(DFN)(Pineetal.(2006),ElmoandStead(2010))orsyntheticrockmassapproach(SRM)(Pierceetal.,2007),wherebyrockmasspropertiesarederivedfrommodelledintactanddiscontinuitybehaviour.DerivationofmodelinputparametersfortypicalUnitedKingdomCoalMeasuresstrataisbasedonevaluationandcomparisonwithmultistagetriaxialtestdata.Acohesionweakeningcriterionisnormallyadoptedtorepresentthebrittle-plasticbehaviourandpeakandresidualpropertiesofthedifferentstrata.Sensitivityanalysesarethenperformedtoassessthepotentialimpactofvariabilityofinputdataonmodeloutput.GSIevaluationforderivationofrockmassqualityandrockmassmaterialpropertiesisnotroutinelyperformedfordesignofroadwaysinCoalMeasuresstrataintheUnitedKingdom.TypicalrangesofresidualcohesionvaluesforthedifferentroofstratacanbefoundinTable2.3.Numericalmodellingofcoalmineroadwayroofbehaviour3.1.ModellingtheeffectsofhorizontalstressdirectionRepresentativerooflithologyandin-situstressconditionshavebeenmodelledforatypicaltunnelorroadway(5mwideand3.5mhigh)driventhroughtheCoalMeasuresstrataoftheSelbyCoalfield.In-situstressmeasurementsandundergroundstressmappingobservationsfromtheSelbyCoalfieldhaveconfirmedthattheorientationofthemaximumhorizontalstressdirection(approximatelyNW-SE)isconsistentwiththenationaltrend(Bigbyetal.,1992andCartwright,1997),althoughvariationsmayexistincloseproximitytomajorfaults.Themaximumhorizontalstressistypically1.5to1.7timestheminorhorizontalstress,andoftengreaterthantheverticalstress.Theverticalstresshasbeenshowntobeafunctionofdepthbelowsurface(Kentetal.,2002).Previouselasticandsimplenon-linearmodellingcarriedoutbyMeyeretal.(1999a,b)usingFLAC3D(Itasca,1997),clearlydemonstratedthethreedimensionalnatureofstressredistribution,andtheassociatedfailurezone,arounda5mwideby3.5mhightunnelface-endattheNorthSelbyMine.Thein-situstressfieldincorporatedinthemodelshadamaximumhorizontalstressof25MPa,aminimumhorizontalstressof15MPaandaverticalstressof16MPa.ThemodelsalsoincorporatedrepresentativeCoalMeasuresrooflithologyandassociatedmaterialproperties,asshowninTable2.Theorientationofthisstressfieldrelativetothetunneldrivagedirectionwasvariedinordertoassesstheimpactofstressfieldorientationonroadwaydeformationandultimatelyreinforcementrequirements.Initialmodellingconcentratedonelasticanalysispriortonon-linearmodellingthatincorporatedsystematictunneladvanceandsupportinstallation.3.2.ModellingtheeffectsofmudstonethicknessintheimmediateroofPHASE2hasalsobeenusedtoshowthedetrimentaleffectsofanincreasedthicknessofmudstoneintheimmediateroofofthetunnelforthestressparallelcase(mostfavourablestressdirection).Fig.8illustratesthemodelledstressredistributionandextentoftheassociatedfailurezoneforamudstonethicknessof1,2and3mintheimmediatetunnelroof.Thefigureclearlyshowsthattheextentofthefailurezoneiscontrolledbythethicknessofmudstoneintheimmediateroof.ThiswasalsonotedbyKentetal.(1999),whoshowedthatincreasedroofdeformationwasassociatedwithtunnelroofsincorporatingincreasedthicknessesofmudstone(Fig.9).Fig.8alsodemonstratestheextentofthefailurezone“abovetheboltedheight”forthemodelled3mofmudstoneintheroof,whichsuggeststhatundertheseconditionscableboltingwouldalsoberequiredtostabilizetheexcavation.3.3.ModellingofprogressiverooffailureandfracturepropagationDependingonthenatureofthestressregimeactingonanexcavation,andtheassociateddeformationalbehaviouroftherockmasssurroundingtheexcavation,anumberofpotentialfailuremechanismscanexist.Thesecaninvolveacombinationofshearfailureonexistingjoints/weaknesshorizons,extensionofcriticallyorientedjointsandpropagationofnewfracturesthroughpreviouslyintactrock.Bothcontinuumanddiscontinuummodelsmaybeusedtosimulateprogressiverockfailurebyadoptingvariousconstitutivecriteriaassociatedwitheithermaterialbehaviourand/ordiscontinuityrelatedbehaviour.Forexample,usingacontinuumapproach,Meyer(2002)adoptedacohesion-weakeningcriterionfortheimmediaterooflithologyofthemodelledyieldzoneshowninFigs.5and6.Sharpe(1999),usingadiscontinuumapproach(UDEC(Itasca,1997)),wasabletomodeljointopeningaboveatunnelsitedadjacenttopreviouslongwallworkingswheninvestigatingtheeffectsofstressredistributionandgoaf-edgecavingconditionsontunnelstability.Galeetal.(2004)wereabletosimulaterooffailuremechanismsusingastrainsofteningpost-failurecriterionthatcanincorporateweaknessplanes,inasimilarwaytothestrainsoftening,ubiquitouscodewithinFLAC3D(Itasca,1997).Althoughbothcontinuumanddiscontinuummodelsprovideusefulanalysisforinterpretationoffailurearoundundergroundexcavations,neitherapproachisabletoeffectivelycapturetheinteractionofexistingdiscontinuitiesandthecreationofnewfracturesthroughfracturingofintactrock.Cogganetal.(2003),Klercketal.(2004)Pineetal.(2006)andSteadetal.(2004)highlightedthebenefitsofthehybridfinite/discreteelementcodeELFEN(Rockfield,2004)tomodelprogressivefracturedevelopmentinbothundergroundandsurfaceexcavationexamples.Thecodehasalsobeenusedbytheauthorstomodelprogressivedevelopmentofshear-relatedfailureintheimmediateroofofatunnel,asshowninFig.10.Fig.10depictsselectedstagesinthesimulationoffracturedevelopmentintheimmediateroofofacoalminetunnel.Themodelledrooflithologyisrepresentativeofatypicalmudstone.Thefigureillustratesprogressiveplasticstraindevelopmentpriortosubsequentfracturingoftheimmediateroof,whichcomparesfavourablywiththeobservedshear-typefailuredescribedbyAltounyanandTaljaard(2000),showninFig.11.Cogganetal.(2003)alsodemonstratedhowthehybridcodecouldbeusedtoinvestigateroofbeambehaviour.TheUDECVoronoimodel(Itasca,2011)hasbeenusedtoexplicitlymodelthegeneration,propagationandcoalescenceoffracturesaroundacoaltunnelsubjectedtoamajorhorizontalstressorientedperpendiculartotunneldrivedirection.IntheUDECVoronoimodel,materialisrepresentedasadensepackingofpolygonalblocksinteractingtogetherattheirboundaries.Micro-properties,suchascohesion,friction,andtensilestrengthareassignedtotheboundariesofthesepolygonalblocks.Fracturesareinitiatedwithintheintactmaterialwhenthestressesappliedonthecontactsexceedeitherthetensileorshearstrength.Pre-existingfracturescanalsobeincorporatedbycreatingcracksandassigningspecificproperties,suchaszerotensilestrengthandcohesion.Fig.12showsselectedstagesinthesimulationoffracturedevelopmentaroundamodelledcoalminetunnel.Beddingwasincorporatedinthemodel.Fracturegenerationstartsatthetunnelcornerswheretheinitialstressconcentrationoccurs.Fracturesthenextendintotheroofandfloor.Themodelrealisticallyproducedbeddingdeflectionintheimmediateroof,separationanddevelopmentofafailurezonearoundtheexcavation.Brittlespallingalsooccursinthesidewallsofthemodelledcoalmineroadway3.4.Modellingofroofbeambehaviorroofbeambehaviour.Snapshotsoftheearlystagesofroofbeamfailureprocessprovideinsightintotheresultantunderlyingfailuremechanisms.Onlythe0.2%plasticstraincontourandresultantmodeledfracturehasbeenincludedinFig.14forclarity.Fig.14aandbshowsdifferentfailuremechanismsforthestressconditionsmodelled.Fig.14ashowspreferentialstraindevelopmentintheroofbeamadjacenttotheedgeofthetunnelroof,whereasFig.4bshowsthedevelopmentoftensilefracturingatthebaseofthecentreofthemodelledroofbeam.Furtherdevelopmentofthemodelledfailureresultsinseparationoftheroofbeamawayfromtheupperroofhorizonatthecentreoftheroofspan.AnexampleofobserveddevelopmentoftensilecrackingintheroofofcoaltunnelisprovidedinFig.15.Themodellingresultssuggestthatthehybridcodemaybeusedtoinvestigatethesnap-through,crushing,slidinganddiagonalcrackingmodesofrooffailuredescribedbyDiederichsandKaiser(1999),andtheeffectsofvaryingcombinationsofthickandthinroofbeamsonexcavationroofstabilitydescribedbyGoodman(1980).4.DiscussionandconclusionsWhenvalidatedagainstin-situmonitoringdatanumericalmodelingcanprovideusefulinsightsintocoalminetunnelroofbehaviorandassociatedreinforcementdesign.Modellingcanbeusedtoconfirmthedetrimentaleffectsofadversein-situstressorientation.Tunnelsdrivenperpendiculartoahighhorizontalstressdirectionsuffergreaterdeformationandincreasedfailurezoneswhencomparedtotunnelsdriveninastress-paralleldirection.Theextentofthemodelledfailurezoneiscontrolledbythethicknessofweakmudstoneintheimmediateroofofthetunnel.Tunnelsdrivenatanangletothein-situstressfieldsufferasymmetricaldeformation,withpronouncedstresseffectsthatrequireadditionalreinforcement.Three-dimensionalmodellingisrequiredtoeffectivelycapturethethree-dimensionalnatureofthestressredistributionaroundatunnelface-end,particularlywhenthemaximumhorizontalstressisalignedatangletothetunneldrivagedirection.Table1providesasummaryofkeyadvantagesandlimitations/disadvantagesforcontinuum,discontinuumandhybridmethodsofanalysisappliedtomodellingoftunnelroofbehaviour.Thecorrectchoiceofmethodusedwilldependonthecomplexityoftheproblem,presenceofdiscontinuities,materialbehaviour,in-situstressregimeetc.Asignificantlimitationofmostpublishedmodellingofundergroundcoalminesto-dateisalackofconsiderationofintactrockfractureanditsimplicationforstress-redistribution,energyreleaseandchangesinkinematicconstraints.Akeyadvantageofmodellingisthecapabilitytorapidlyassesschangesinparameterssuchasthicknessofimmediaterooflithologyonextentoffailureandassociateddeformation,asshowninFig.8.Thetechniquesareextremelyuseful,butrequireduediligenceforthemodelingtobeeffective.Itisimportantthattheuserbefamiliarwiththepotentiallimitationsofeachofthedifferenttypesofavailablesoftware.Forexample,constraintsassociatedwithtwo-dimensionalanalysis(suchastheassumptionofplanestrain)canproduceanoversimplifiedrepresentationofsiteconditions.Significantfurtheradvancesinourunderstandingwillrequiretheuseofthree-dimensionaldiscreteelement/hybridcodeswithfracturepropagationalgorithms;this,however,willnecessitatefurtherresearchtovalidatethemodelledcasehistories.Improvementsinparallelprocessingcodingofsoftwareandcomputerpowerwillbeessentialtomodelmoredetailedlargescalethreedimensionalexamples.AcknowledgementsTheauthorswouldliketothanktheEditorandtwoanonymousreviewersfortheirhelpfulandconstructivecomments.TheywouldalsoliketothankthecontributionofseveralPhDstudentsattheCamborneSchoolofMinesincluding,BrianClifford,LewisMeyerandLeighSharpeandresearchcollaborationwithRockMechanicsTechnology(nowGolderAssociates)andRockfieldSoftwareLtd.ReferencesAlvarez-Fernandez,M.I.,Gouzalez-Nicienza,C.,Alvarz-Vigil,A.E.,HerreraGarcia,G.,Torno,S.,2009.Numericalmodellingandanalysisoftheinfluenceoflocalvariationinthethicknessofacoalseamonsurroundingstresses:applicationtoapracticalcase.InternationalJournalofCoalGeology79,157–166.Altounyan,P.F.R.,Taljaard,D.,2000.DevelopmentsincontrollingtheroofinSouthAfricancoalmines—asmarterapproach.Coal—thefuture.12thInternationalConferenceonCoalResearch.SouthAfricanInstituteofMiningandMetallurgy,pp.39–46.Barton,N.,Pandey,S.K.,2011.NumericalmodellingoftwostopingmethodsintwoIndianminesusingdegradationofcandøbasedonQ-parameters.InternationalJournalofRockMechanics&MiningSciences48,1095–1112.Bigby,D.N.,Cassie,J.W.,Ledger,A.R.,1992.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年年3D打印机项目合作计划书
- 2025年水帘水洗式喷柜项目可行性研究报告
- 2025年模具修补万用胶项目可行性研究报告
- 2025年机车电动架车机项目可行性研究报告
- 2025年广播功放机项目可行性研究报告
- 2025-2030中国影视摄影行业市场发展分析及前景预测与战略规划研究报告
- 2025-2030中国宽带砂光机行业市场发展趋势与前景展望战略分析研究报告
- 2025-2030中国宠物店行业经营风险及前景创新策略建议报告
- 2025-2030中国多层片式电感行业市场发展趋势与前景展望战略分析研究报告
- 2025-2030中国垃圾处理设备行业市场深度调研及发展趋势与投资前景预测研究报告
- 2025年湖北省八市高三(3月)联考物理试卷(含答案详解)
- 2025年职工职业技能竞赛(瓦斯抽放工赛项)参考试指导题库(含答案)
- 中央2025年中央宣传部直属单位招聘78人笔试历年参考题库附带答案详解
- 精神科药物的自我管理
- 2025年新华人寿保险股份有限公司招聘笔试参考题库含答案解析
- 第三章-公安情报工作研究
- 2025届高考语文专题复习:大语用观下的语用题复习备考刍议
- 中国糖尿病防治指南(2024版)解读2
- 珠海管道内衬修复施工方案
- 有效咳嗽咳痰课件
- 2024《整治形式主义为基层减负若干规定》全文课件
评论
0/150
提交评论