软银:AI-RAN - 电信基础设施迈向人工智能时代 AI-RAN - Telecom Infrastructure for the Age of Al_第1页
软银:AI-RAN - 电信基础设施迈向人工智能时代 AI-RAN - Telecom Infrastructure for the Age of Al_第2页
软银:AI-RAN - 电信基础设施迈向人工智能时代 AI-RAN - Telecom Infrastructure for the Age of Al_第3页
软银:AI-RAN - 电信基础设施迈向人工智能时代 AI-RAN - Telecom Infrastructure for the Age of Al_第4页
软银:AI-RAN - 电信基础设施迈向人工智能时代 AI-RAN - Telecom Infrastructure for the Age of Al_第5页
已阅读5页,还剩82页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AI-RAN:Telecom

©SoftBankCorp.

Contents

ExecutiveSummary 4

1.AI-RANVision:ShapingtheFutureofTelecom 5

1.1TelecomChallenges:BalancingMassiveCapitalInvestmentswithROI 5

1.2Opportunities:TransformingNetworkInfrastructurethroughAI-RAN 6

1.3FromCostCentertoProfitCenter 7

2.RANEvolution:FromdRAN,vRAN,CloudRAN,OpenRANtoAI-RAN 7

2.1KeyDevelopmentsinRANEvolution 7

2.2AI-NativeNetworks:TheRoleofAIinRANTransformation 9

2.3AI-RANDefinitions 9

3.HistoryofSoftBank'sAI-RANR&D 10

3.1EarlyResearchandAI-RANDevelopment 10

3.2ApplicationsofSoftBankAI-RANResearch 11

3.3PartnershipsandCollaboration 12

4.gRAN:GPU-basedAI-RANArchitecture 13

4.1KeyCharacteristicsofgRAN 13

4.2TheArchitectureofgRAN-basedAI-RAN 14

4.3gRANCaseStudy:NVIDIAAIAerial 15

5.IntroductionofAITRASbySoftBank 17

5.1KeyFeaturesofAITRAS 17

5.2KeyComponentsofAITRAS 17

5.3AI-NativeOrchestration 19

5.4EdgeAI 20

5.5KeyBenefitsofAITRAS 21

6.AITRASEvaluation 22

6.1OutdoorTestbedforAITRAS 22

6.2AITRASPerformanceEvaluation 24

6.3SoftBank’sL1EnhancementsinAITRAS 25

7.AI-and-RANVirtualizedInfrastructureinAITRAS 26

7.1SoftBankAI-and-RANApproach 26

7.2HardwareandResourceManagement 26

7.3AITRASAI-and-RANOrchestrator 27

7.4AgenticAI-ServerlessAPIPoweredbyNVIDIAAIEnterprise 28

7.5MeetingHighAvailabilityandPerformanceStandards 30

7.6SustainabilityandEnergyEfficiency 30

©SoftBankCorp.

3

AI-RAN:TelecomInfrastructurefortheAgeofAI

8.AITRASAIApplications 31

8.1TheShifttoComputing-CentricArchitecture 31

8.2UseCasesfortheAITRASAI-on-RAN 31

9.StrategicBusinessModelsandRevenueGeneration 35

9.1DemandForecasting,CustomerSegmentation,andBusinessModels 35

9.2AITRASAI-and-RANforNewRevenueGeneration 37

9.3TCOAnalysis 37

10.CaseStudy:AI-RANTCOAnalysis 37

10.1AI-RANDeploymentSimulationinUrbanArea,Tokyo 37

10.2RegionalPeakTrafficVariations 38

10.3ROIAnalysisofAI-RANwithNVIDIAGB200-NVL2 39

11.Conclusion 41

11.1ChartingtheFutureofTomorrow’sNetworks 41

11.2Long-TermVisionandSustainableGrowthStrategies 42

References 44

Acknowledgment 45

Glossary 45

4

AI-RAN:TelecomInfrastructurefortheAgeofAI

ExecutiveSummary

SoftBank’sAI-RANinitiativeaimstorevolutionizethetelecomindustrybyintegratingArtificialIntelligence(AI)intoRadioAccessNetwork(RAN),transformingtraditionalnetworksfromcostcentersintointelligent,revenue-generatingplatforms.Withmobiledatatrafficcontinuouslygrowing,AI-RANisexpectedtomeetthedualchallengesofrisinginfrastructurecostsandintensifyingmarketcompetition.Thisapproachisexpectedtoenabletelecomoperatorstooptimizenetworkperformance,reducecosts,andcreatenewrevenuestreamsthroughAI-enabledservices.

AI-RANmaybeimplementedleveragingasoftware-defined,GPU-poweredarchitecturecalledgRAN(GPU-basedRAN).Thisadvancedarchitecturesupportshigh-performancenetworkoperationsbyutilizingtheparallelprocessingpowerofGPUs.gRANenablesreal-timedataprocessing,intelligentresourcemanagement,andscalablemulti-tenantoperations.AsthesameplatformsupportsbothnetworkandAIworkloads,gRANoffersunparalleledflexibility,enablingseamlessintegrationofRANservicesandAI-nativeapplicationssuchasautonomousdriving,real-timerobotics,andedgecomputing.

SoftBank’sAI-RANproduct,AITRAS,exemplifiestheconvergenceofAIandtelecominfrastructure.AITRASintegratesRANandAIworkloadsintoasingle,AI-nativecomputingenvironment,offeringcarrier-gradeRANfunctionalitywithenhancedscalabilityandefficiency.Thesystemsupportsmulti-tenantoperations,enablingnetworkproviderstorunAIservicesalongsidetraditionalnetworkfunctions,creatingnewrevenueopportunities.AITRASispoweredbyNVIDIAGH200GraceHopperSuperchip,whichenablereal-timeAIinferenceandnetworkmanagementwithoptimalpowerefficiency.

FieldandlaboratoryevaluationshaveconfirmedAITRAS’sabilitytodelivercarrier-gradestability,higherenergyefficiency,andcost-efficientoperations.Inurbantrials,thesystemsuccessfullysupportedhigh-densitytrafficscenarios,whilelabtestsconfirmedthatitspowerconsumptionwascomparabletothatofcurrentRANsystems,despitehandlingsignificantlyhigherworkloads.ThisbalancebetweenperformanceandsustainabilitypositionsAI-RANasatransformativeforceintelecominfrastructure.

Toaccelerateindustryadoption,SoftBankplayedaleadingroleinestablishingtheAI-RANAllianceincollaborationwithmajortechnologypartnerssuchasNVIDIA,Arm,Ericsson,Nokia,Samsung,andT-Mobile.Thisallianceisfosteringinnovationthroughcollaborativeresearchanddevelopmentactivities,advancingAI-RANtechnologieswhilealigningwiththeglobalstandardssetbyorganizationslike3GPPandO-RANAlliance.

SoftBankenvisionsaphaseddeploymentroadmapforAITRAS,SoftBank’sAI-RANproduct,beginningwithOver-the-Airpilotinafieldareain2024,followedbycommercializationby2026.

5

AI-RAN:TelecomInfrastructurefortheAgeofAI

1.AI-RANVision:ShapingtheFutureofTelecom

ThevisionofSoftBankAI-RANR&DistorevolutionizetelecommunicationsbyintegratingAIintothecoreofRANinfrastructure,transformingtraditionalRANintointelligent,adaptive,andrevenue-generatingplatforms.

Figure1.AI-RAN:AIandRANintegration

1.1TelecomChallenges:BalancingMassiveCapitalInvestmentswithROI

Thetelecomindustryisfacingsignificantcapitalexpenditurepressuresduetorapidlyevolvingtechnologiesandincreasingdatademands.TheGSMA'sTheMobileEconomy2024report

1

revealsthatintheglobalmobilemarket,totaloperatorrevenuesareprojectedtogrowfrom$1.11trillionin2023to$1.25trillionby2030,representingamodestcompoundannualgrowthrate(CAGR)of1.74%.However,totalcapitalinvestmentsthrough2030areestimatedat$1.5trillion,exceedingtotalsingle-yearrevenues.Thishighlightsacriticalchallengefacedbyoperatorsworldwide.

Foremostamongthesechallengesisthesubstantialinvestmentcostassociatedwith5Gnetworkdeployment.Newinfrastructurerequirements,suchastheutilizationofhigherfrequencybandsandthemassdeploymentofMIMOantennas,necessitatesignificantfunding.Additionally,theimpactofincreasedtrafficfromgenerativeAIapplicationslikenewlyemergingLargeLanguageModels(LLMs)oninfrastructuremustalsobeconsidered.Thesupplyofequipmentforthisinfrastructureiscurrentlydependentonafewspecificvendors,makingitdifficulttoreducecostsandencouragecommoditization.Additionally,therapidproliferationofIoTdevicesandthegrowingpopularityofhigh-definitionvideostreamingnecessitatecontinuednetworkcapacityexpansion.Meanwhile,intensepricecompetitionin

1GSMA,TheMobileEconomy2024Report

:/solutions-and-impact/connectivity-for-good/mobile-economy/wp-

content/uploads/2024/02/260224-The-Mobile-Economy-2024.pdf

6

AI-RAN:TelecomInfrastructurefortheAgeofAI

telecomservicesmakesitincreasinglydifficulttorecoverinvestmentsthroughtraditionaldataservicefeemodels.Furthermore,theemergenceofOver-The-Top(OTT)providerswhooperatewithouttheirowncommunicationsinfrastructureimpactstelecomoperators'profitability.

AccordingtoGSMA'sTheMobileEconomy2024report,despitediscussionsaboutapotentialslowdowningrowth,monthlyglobalmobiledatatrafficperconnectionsawasignificantincreasefrom10.2GBin2022to12.8GBin2023,representingthelargestabsolutegrowthsincedatatrackingbeganin2016.Lookingforward,itisprojectedthattotalmobiledatatrafficwillgrowatanaverageannualrateof23%between2023and2030,andexceed465exabytes(EB)permonthbytheendofthedecade.Thisnetworkresourcestrainisforcingtelecomoperatorstomakesubstantialcapitalinvestments.Consequently,dependingontheirrevenuemodels,operatorsfacetheriskofbeingunabletorecovertheirincreasinginvestmentcosts,presentingacriticalmanagementchallenge.

Concurrently,pricecompetitionfortelecomserviceshasintensified,makingitchallengingtorecoupinvestmentsthroughtraditionaldatacommunicationfeerevenuemodels.

Inthiscontext,telecomoperatorsareconfrontedwiththechallengeofimprovinginvestmentefficiency.Specifically,theyfacetwokeyissues:reducinginfrastructuredevelopmentcostsandcreatingnewrevenuestreams.Thisnecessitatesnotonlymoreefficientoperationandgreatercostreductionsinnetworkinfrastructure,butalsothedevelopmentofvalue-addedservicesandtheestablishmentofnewbusinessmodelstosecureadditionalrevenuesources.

1.2Opportunities:TransformingNetworkInfrastructurethroughAI-RAN

AI-RANpresentsauniqueopportunitytofundamentallytransformnetworkinfrastructure,makingitmoreadaptable,efficient,andcapableofsupportingnewAIservices.ByleveragingAI,telecomoperatorscanoptimizenetworkoperationsinrealtime,improveresourceutilization,andintroducenewrevenue-generatingopportunities.

OneofthekeyopportunitiesofferedbyAI-RANisitsabilitytoshiftfromastatic,hardware-dependentnetworkarchitecturetoadynamic,AIandsoftware-drivenapproach.AIallowsforintelligentdecision-makingatthenetworkedge,enablingreal-timeresponsestotrafficconditions,userdemand,andservicerequirements.Thislevelofadaptabilityensuresthatnetworkswillalwaysoperateatpeakefficiency,providebetterqualityofservice,andsuppressenergyconsumption.

Furthermore,AI-RANopensthedoortonewserviceofferingsthatwerepreviouslynotfeasible.Forexample,advancednetworkslicing,enabledbyAI-drivenresourcemanagement,allowsoperatorsto

7

AI-RAN:TelecomInfrastructurefortheAgeofAI

createcustomizedend-to-endvirtualnetworkstailoredtothespecificneedsofdifferentcustomersegments,suchaslow-latencyconnectionsforgamingandLLMinferencingandhigh-reliabilitynetworksforenterprisemissioncriticalapplications.Thisabilitytoofferdifferentiatedservicesnotonlyenhancescustomersatisfactionbutalsocreatesnewrevenuestreamsforoperators.NewEdgeAIinferencingservicesarealsopossibleonthesameAI-RANinfrastructure.

1.3FromCostCentertoProfitCenter

AI-RANisseenasastrongapproachtoenhancingthereturnoninvestmentinnetworkinfrastructurefortelecomoperators.OneofAI-RAN'skeyfeatures,multi-tenancy,notonlyutilizesRANresourcesforhigh-throughputbroadbandcapacity,wirelessqualityimprovement,andnetworkoptimizationbutalsoflexiblyallocatesresourcesforedgecomputinginfrastructuresthatsupportAItrainingandinferencing.Thismulti-purposecapabilityenablesoperatorstoimprovemobilenetworkqualitywhilecreatingnewrevenueopportunities.

ByadoptingAI-RAN,telecomoperatorscanmaximizetheprofitabilityoftheirnetworkinvestmentsandestablishsustainablegrowthmodels.Thistransformationconvertstraditionalnetworkinfrastructurefromacostcenterintoaprofitcenter,enablingoperatorstoachievesustainablegrowththroughnewbusinessmodels.

Figure2.AI-RANredefinestelecombusiness

2.RANEvolution:FromdRAN,vRAN,CloudRAN,OpenRANtoAI-RAN

2.1KeyDevelopmentsinRANEvolution

TheRANlandscapehasundergonearemarkableevolution,transitioningfromtraditionalhardware-centricmodelstomoreadvanced,AIandsoftware-basedarchitectures.ThisevolutioncanbecharacterizedbytheprogressionfromDistributedRAN(dRAN)toVirtualizedRAN(vRAN),CloudRAN(C-

8

AI-RAN:TelecomInfrastructurefortheAgeofAI

RAN),OpenRAN,andultimatelyAI-RAN.

2.1.1EvolutionfromdRANtovRAN,C-RAN,andOpenRANtowardAI-RAN

dRANrepresentsthetraditionalRANsetup,whereradiounits,distributedacrosssites,arecloselycoupledwithbasebandunitsforsignalprocessing.Thissetupoftenleadstoincreasedcostsincludingsiteassets,inefficientresourceuse,anddelaysinserviceevolution.

vRANemergedasaresponsetothesechallengesbyvirtualizingbasebandfunctions.WithvRAN,networkfunctionscouldbeseparatedfromdedicatedhardwareanddeployedoncommercialoff-the-shelf(COTS)hardware,enhancingflexibilityandscalability.

C-RANfurtheradvancedthisconceptbycentralizingbasebandprocessinginacloudenvironment.Thecentralizedprocessingreducedhardwarerequirementsatindividualsites,allowingbetterpoolingofresourcesandcentralizedmanagement.Itimprovedefficiencybutrequiredarobustbackhaultomanagelatencychallenges.

OpenRANbuildsuponthevirtualizedandcloud-basedapproachesbyintroducingstandardizationandinteroperability.ItdisaggregatesRANcomponents,allowingoperatorstomixandmatchsolutionsfrommultiplevendors,breakingvendorlock-in,reducingcosts,andencouraginginnovation.Thisopennesssupportsgreaterflexibilityandadaptabilityinnetworkdeployments.

AI-RANintegratesAIcapabilitiesintoRANoperationsoveracommonacceleratedinfrastructureandsorepresentsthegreatestadvance.ByprovidingAIandRAN,AIforRAN,andAIonRAN,operatorscanmovebeyondmereconnectivityandmakenetworksmoreintelligent,self-optimizing,andproactive.

2.1.2DriversofTransformation

Thekeydriversbehindthesetransformationsincludecostoptimization,performanceoptimization,improvingflexibilitywithsoftware,enhancingoperationalefficiencyandcapturingnewmonetizationopportunities.TraditionalRANsolutionsrequiresignificantcapitalexpenditure(CAPEX)forspecializedhardware,whiledRANalsofacedscalabilitylimitationsandhighoperationalcosts.Movingtovirtualizedandcloud-basedsolutionsaddressesthesechallenges,allowingoperatorstominimizecostsandfullyutilizethescalabilitypotentialofthecloudinfrastructure.OpenRANandAI-RANtakethesebenefitsfurtherbyenablingflexibilitythroughopeninterfaces,greateroperationalefficiency,andnewmonetizationmethodsbasedonAIservices.

9

AI-RAN:TelecomInfrastructurefortheAgeofAI

2.2AI-NativeNetworks:TheRoleofAIinRANTransformation

AIisplayingatransformativeroleintheevolutionofRANbyprovidingadvancedtoolstooptimizeperformance,automateresourceallocation,andwillultimatelytransformhowmodernnetworksoperate.

ImprovingSpectralEfficiency,OptimizingPerformanceandResourceManagement:AIisfundamentallychanginghowRANresourcesaremanagedbymakingoperationsmoreadaptiveandefficient.IntraditionalRANsetups,resourceallocationandmanagementrequiremanualconfiguration,makingithardtoreacttouserdemands.AI,however,enablesalevelofdynamicadaptabilitythatwaspreviouslyunachievable.Forexample,AI-nativemodelscanautomaticallyallocatebandwidthbasedonreal-timeusagepatterns,manageinterferencemoreeffectively,andensureoptimalloadbalancingacrossthenetwork.Thisimprovesspectralefficiencyandoptimizesperformanceandmakesbetteruseoftheavailableinfrastructure.

FromReactivetoPredictiveModels:OneofthemostsignificantcontributionsofAItoRANisitsabilitytoconvertnetworksthatmerelyreactintothosethatcanpredict.Traditionally,networkmanagementrespondstoissuesonlyaftertheyoccur.AIchangesthisparadigmasitspredictivecapabilitiesallownetworkstoanticipateproblemsandtakepreventiveaction.Machinelearningalgorithmscananalyzevastamountsofnetworkdatatoidentifypatternsandpredictpotentialfaultsorcongestionpointsbeforetheyimpactservicequality.Thisnotonlyimprovesreliabilitybutalsohelpsminimizedowntimeandoperationalcosts.

UnlockingRevenuePotential:AI-nativenetworksaretransformingRANassetsfromtraditionalcostcentersintorevenue-generatingcenters.GenerativeAIintroducesnewuserexperiencesbyprovidingEdgeAIinferencinganddynamicresourceallocation,leadingtobetterservicequalityandhighercustomersatisfaction.GenerativeAIalsoidentifiesopportunitiesformonetizingnetworkcapabilities,suchasofferingpremiumservices,targetedadvertising,andedgecomputingsolutions.ThisshiftnotonlymaximizesthevalueofRANinvestmentsbutalsopositionsnetworksasstrategicassetsdrivingprofitability.

AI-RANisthusattheforefrontofamoreproactiveandefficientnetworkmanagementapproach,transformingRANintoakeyenablerofintelligentandautonomousnetworkservices.

2.3AI-RANDefinitions

AI-RANreferstotheapplicationofartificialintelligencetechnologytotheRAN.Itaimstoimprovemobilenetworkefficiencyandoptimizepowerconsumption,whileenhancingtheutilizationoftheexistinginfrastructure.TheconceptinvolveshostingbothAIapplicationsandvirtualRAN(vRAN)softwareonthe

10

AI-RAN:TelecomInfrastructurefortheAgeofAI

sameinfrastructure,allowingtelecomoperatorstogeneraterevenuefrombothnetworkaccessandAIserviceswithasinglecapitalinvestment.

TheAI-RANAlliancehasestablishedthreeitemstoaddressdifferentaspectsofAIintegrationinRAN:

AI-for-RAN:FocusesonusingAItoenhanceRANperformance.ItexploreshowAIcanimproveoperationefficiency,boostcapacity,andachievekeyperformancetargetsintheradioaccessnetwork.

AI-and-RAN:InvestigateshowtousethesameinfrastructuretorunbothRANworkloadsandAIworkloadssimultaneously.ThegoalistoincreaseresourceutilizationandopenupnewrevenuestreamsfortelcosbyhostingvariousAIapplicationsonthesameplatformsthatrunnetworkfunctions.

AI-on-RAN:AddressessolutionsforrunningAIapplicationsontheradioaccessnetwork.ItfocusesonenhancingRANtoensureitcanhandletheincreasingdemandsofAIandgenerativeAIapplicationswithoutcompromisingkeyfactorslikelatencyandsecurity.

Figure3.ThreeitemstoaddressdifferentaspectsofAIintegrationinRAN

TheseitemscollectivelyaimtointegrateAIintothefabricoftheradioaccessnetwork,transformingnetworksintoself-organizing,self-optimizing,andself-managingsystemsthatcanhandlereal-timechanges,anticipatemaintenanceneeds,andmoreefficientlymanageresources.

3.HistoryofSoftBank'sAI-RANR&D

3.1EarlyResearchandAI-RANDevelopment

SoftBankcontinuestoexplorenewwaystocreatevaluebyintegratingtraditionaltelecominfrastructure

11

AI-RAN:TelecomInfrastructurefortheAgeofAI

withAIamidsttherapidinnovationinAItechnology.Recognizingthatthefullperformanceof5Gremainsunrealizedsinceitsintroduction,SoftBankbeganeffortstoenhance5GthroughAIandMachineLearning(ML).

SoftBankisleadingthedevelopmentofAI-RAN,anewarchitecturethatintegratesAIapplicationsandsoftware-basedRANintoasinglecomputer.AI-RANenhancesthecapabilitiesandqualityofRANwhilealsoprovidingasharedcomputingplatformforAIapplicationsacrossvariousindustries.SoftBankaimstodeployAI-RANequipmentinAIdatacentersdistributedthroughoutJapan,directlyconnectingSoftBankbasestationstotheseAIdatacenterstooffersecureandlow-latencyAIservices.

3.2ApplicationsofSoftBankAI-RANResearch

Inthepast,theprimarystrategyforachievinghigh-speed,high-capacitywirelesscommunicationwastoincreasethefrequencybandsused,asevidencedbythetransitionfrom3GtoLTEand5G.However,theemergenceofAI-RAN,whichcanenhanceuserexperiencewithoututilizingmorefrequencybands,holdsgreatpotentialforeffectivelyutilizingthefinitepublicresourceoftheradiospectrum.Withthetransitionfrom5Gto6Gnetworksapproaching,theimportanceofAI-RANisexpectedtostrengthenevenmore.

TheAI-RANdatacenterbeingdevelopedbySoftBankwillallowboth"RANoperations"and"AIapplications"torunsimultaneouslyonthesameserver.Thisadvancementenablestelecomoperatorstosecuretworevenuestreams—RANandAI—withasinglecapitalinvestment.Moreover,byintegratingdifferentservices,operatorscanimprovetheoperationalefficiencyoftheirinfrastructure.Consequently,AI-RANholdsthepotentialtosignificantlyimprovethereturnoncapitalinvestmentfortelecomoperators.

CaseStudy:ApplicationofAIforchannelinterpolationinlowerlayersofwirelesscommunication

Indenseenvironmentswithmultiplebasestationsandterminals,radiosignalsareoftendistortedbymultipathfading.Asaresult,conventionalsignalprocessingtechnologymayfailtoaccuratelyestimatewirelesscharacteristics,leadingtolowerthroughput.

Toaddressthis,weappliedAI-nativesuper-resolutiontechnology,originallyusedinimageanalysis,toradiosignalprocessing.SimulationswereconductedtoevaluatethepotentialuplinkthroughputimprovementsbyreconstructingdegradedsignalsusingAI.AftertrainingtheAImodelwithsimulatedradiosignaldatabasedonreal-worldenvironmentalconditionsandtestingitwithuplinksignals,a30%improvementinuplinkthroughputcomparedtoconventionalsignalprocessingtechnologywasobserved(Figure4).

12

AI-RAN:TelecomInfrastructurefortheAgeofAI

Figure4.Comparisonresultofuplinksignals:30%throughputgain

3.3PartnershipsandCollaboration

Figure5.AI-RANAlliancelaunchceremonyatGSMAMobileWorldCongressBarcelona2024

SoftBankisacceleratingthedevelopmentofAI-RANthroughitspartnershipwithNVIDIAandotherindustryleaders,havingbegunthedevelopmentofAI-RANsolutionsonnewhardwaresuchastheNVIDIAGraceHopper200Superchip(GH200),whichiscurrentlyevolvingintotheNVIDIAGraceBlackwellplatform.

TopromotethewidespreadadoptionanddevelopmentofAI-RANtechnology,SoftBankhaspartneredwithindustryleadersincludingNVIDIA,Arm,T-Mobile,Ericsson,Nokia,andSamsungtoestablishtheAI-

13

AI-RAN:TelecomInfrastructurefortheAgeofAI

RANAlliance

2

.SinceitslaunchatGSMAMobileWorldCongressBarcelona2024,thealliancehasgrownto58members(asofDecember2024),encompassingadiversemixoftelecomoperators,semiconductorcompanies,andacademicinstitutionsunitedbythemissionofadvancingRANperformanceandcapabilitiesthroughAIinnovation.

SoftBankbelievesthatAI-RANhasthepotentialtobecomethetechnologythatwillsignificantlyimpactnotonlythetelecomindustrybutalsosocietyasawhole.Withtheimminenttransitionfrom5Gto6Gnetworks,theimportanceofAI-RANisundeniable.SoftBankwillcontinuetofocusoncontinuingAI-RANdevelopmenttoinitiateanewparadigmshiftforthe6Gera.

SoftBank'sAI-RANR&Deffortshavethepotentialtorevolutionizetelecomnetworksandcreatenewbusinessopportunitiesacrossvariousindustries.

4.gRAN:GPU-basedAI-RANArchitecture

gRAN,atermintroducedbySoftBank,standsforGPU-basedRANthatoffersanarchitecturefordeployingAI-RAN,consideredthedesirableevolutionarystageofRANfollowingvRAN,cRAN,andO-RAN.TheintroductionofgRANmarksasignificanttechnologicalleapintheevolutionoftheradioaccessnetwork.ByleveragingthepowerofGPUsinadditiontoCPUs,gRANenhancestheefficiency,scalability,andflexibilityofRANinfrastructures;itsupportsadvancedAI-nativefunctionsandmeetstheever-growingdemandsofAIapplicationsandmoderntelecomnetworks.

4.1KeyCharacteristicsofgRAN

ThetransitionfromtraditionalRANarchitecturestosoftware-drivenapproacheswithhigherperformancehaspavedthewayforgRAN.AsRANbecomesvirtualizedandopen,andmostimportantlysoftware-defined,itlaysthefoundationforportingRANoverGPU-basedacceleratedinfrastructure,andbringinganewlevelofcomputationalpowerandefficiencywithgRAN.

4.1.1WhyGPUsforvRANEvolution?

GPUsarewell-suitedforhandlingthehighlyparallelprocessingworkloadscommoninmodernRANenvironments.UnlikeCPUs,whichareoptimizedforserialprocessing,GPUsexcelatexecutingintensivematrixcalculationsandmultipletaskssimultaneously,makingthemidealforreal-timeRANdataandsignalprocessing.Thisparallelismisparticularlyimportantinhandlingthecomplexalgorithmsrequiredfor5Gandfuture6Gtechnologies,suchasmassiveMIMO,beamforming,and

2FormoredetailsabouttheAI-RANAlliance’smissionandinitiatives,refertotheirwhitepaperat

/wp-content/uploads/2024/12/AI-

RAN_Alliance_Whitepaper.pdf

14

AI-RAN:TelecomInfrastructurefortheAgeofAI

energyreduction.UtilizingGPUsinadditiontoCPUsallowstelecomoperatorstohandletheseworkloadsmoreefficiently,reducelatency,andimproveoverallnetworkperformanceandefficiency.

4.1.2TheTechnologicalLeapwithGPU-basedvRAN(gRAN)

GPU-basedRANenablesmodernAIserviceslikeLLMinferencingbyprovidingthecomputationalpowerneededforreal-timedataprocessinganddecision-makingattheedge.ThisallowsRANtohandlecomplexAIworkloadsefficiently,reducinglatencyandenhancingresponsiveness.Additionally,GPUsfacilitatedynamicresourceoptimization,suchasadvancedSelf-OrganizingNetwork(SON),byenablingrapidanalysisandadaptationofnetworkresourcestochangingdemands,ensuringoptimalperformanceandreliabilityinRANenvironments.TheseattributesallowgRANyieldthemoredynamicandresponsivenetworkscrucialforsupportingemergingusecasessuchasGenerativeAI/LLMinferencing,augmentedreality(AR),virtualreality(VR),andotherdata-intensiveapplications.

4.2TheArchitectureofgRAN-basedAI-RAN

ThearchitectureofgRANconsistsofseveralkeycomponentsthatworktogethertocreateahighlyprogrammable,intelligent,andhighperformingnetworkenvironment.ThecoreelementsofgRANaretheRadioUnit(RU),DistributedUnit(DU),CentralizedUnit(CU),theintegrationofAIcapabilities,andamulti-tenantanddynamicorchestrator.

RadioUnit(RU):TheRUhandlestheradiofrequency(RF)signals,convertingthembetweenanaloganddigitalformats.Itisresponsibleforcommunicatingwithuserdevicesandservesasthemobileuser’sentrypointtotheRAN.

DistributedUnit(DU):TheDUisresponsibleforlower-layerprocessing,includingreal-timetaskslikescheduling,beamforming,and

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论