专题12 将军饮马模型(解析版)_第1页
专题12 将军饮马模型(解析版)_第2页
专题12 将军饮马模型(解析版)_第3页
专题12 将军饮马模型(解析版)_第4页
专题12 将军饮马模型(解析版)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题12将军饮马模型将军饮马模型在考试中,无论是解答题,还是选择、填空题,都是学生感觉有困难的地方,也恰是学生能力区分度最重要的地方,主要考查转化与化归等的数学思想。在各类考试中都以中高档题为主。在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。希望通过本专题的讲解让大家对这类问题有比较清晰的认识。模型1、将军饮马--两定一动求线段和的最小值【模型探究】A,B为定点,m为定直线,P为直线m上的一个动点,求AP+BP的最小。图1图2(1)如图1,点A、B在直线m两侧:辅助线:连接AB交直线m于点P,则AP+BP的最小值为AB.(2)如图2,点A、B在直线同侧:辅助线:过点A作关于定直线m的对称点A’,连接A’B交直线m于点P,则AP+BP的最小值为A’B.例1.(2022·广东·九年级专题练习)已知点,,在x轴上的点C,使得最小,则点C的横坐标为_______.【答案】【分析】作点A关于x轴的对称点A',连接A'B,与x轴的交点即为点C,连接AC,则AC+BC的最小值等于A'B的长,利用待定系数法求得直线A'B的解析式,即可得到点C的坐标.【详解】解:如图所示,作点A关于x轴的对称点A',连接A'B,与x轴的交点即为点C,连接AC,则AC+BC的最小值等于A'B的长,∵A(1,1),∴A'(1,−1),设直线A'B的解析式为y=kx+b(k≠0),把A'(1,−1),B(3,5)代入得,解得,∴y=3x−4,当y=0时,x=,∴点C的横坐标为,故答案为:.【点睛】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.例2.(2022·江苏·八年级专题练习)如图,是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当的周长最小时,的度数为______.【答案】30°##30度【分析】连接BP,由等边三角形的性质可知AD为BC的垂直平分线,即得出BP=CP,由此可知要使△PCE的周长最小,即P点为BE与AD的交点时.最后根据等边三角形三线合一的性质,即得出CP平分,从而可求出.【详解】如图连接BP.∵为等边三角形,∴AD为BC的垂直平分线,∴BP=CP,∵△PCE的周长=PE+CP+CE=PE+BP+CE,∴当PE+BP最小时,△PCE的周长最小,∵PE+BP最小时为BE的长,即此时BE与AD的交点为P,如图.又∵点E为中点,AD为高,为等边三角形,∴P点即为等边角平分线的交点,∴CP平分,∴.故答案为:【点睛】本题考查等边三角形的性质,线段垂直平分线的判定和性质,两点之间线段最短等知识.理解要使△PCE的周长最小,即P点为BE与AD的交点是解题关键.例3.(2022·浙江·临海市八年级开学考试)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是_____.【答案】4【分析】根据等边三角形的性质及轴对称的性质得到∠ABC=∠B=60°,B=AB=BC=2,证明△CBD≌△BD,得到CD=D,推出当A、D、三点共线时,AD+CD最小,此时AD+CD=B+AB=4.【详解】解:如图,连接D,∵正△ABC的边长为2,△ABC与△A′BC′关于直线l对称,∴∠ABC=∠B=60°,B=AB=BC=2,∴∠CB=60°,∴∠CB=∠B,∵BD=BD,∴△CBD≌△BD,∴CD=D,∴AD+CD=D+CD,∴当A、D、三点共线时,AD+CD最小,此时AD+CD=B+AB=4,故答案为:4..【点睛】此题考查了等边三角形的性质,轴对称的性质,全等三角形的判定及性质,最短路径问题,正确掌握全等三角形的判定是解题的关键.例4.(2023.浙江八年级期中)如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为多少?【答案】∠ECF=30º【解析】过E作EM∥BC,交AD于N,如图所示:∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60º,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30º.例5.(2023·江阴市八年级月考)某班级在探究“将军饮马问题”时抽象出数学模型:直线同旁有两个定点、,在直线上存在点,使得的值最小.解法:如图1,作点关于直线的对称点,连接,则与直线的交点即为,且的最小值为.请利用上述模型解决下列问题:(1)几何应用:如图2,中,,,是的中点,是边上的一动点,则的最小值为;(2)几何拓展:如图3,中,,,若在、上各取一点、使的值最小,画出图形,求最小值并简要说明理由.【答案】(1);(2),图和理由见解析【分析】(1)作点A关于BC的对称点A′,连接A′E交BC于P,此时PA+PE的值最小.连接BA′,先根据勾股定理求出BA′的长,再判断出∠A′BA=90°,根据勾股定理即可得出结论;(2)作点C关于直线AB的对称点C′,作C′N⊥AC于N交AB于M,连接AC′,根据等边三角形的性质解答.【详解】解:(1)如图2所示,作点A关于BC的对称点A′,连接A′E交BC于P,此时PA+PE的值最小.连接BA′.由勾股定理得,BA′=BA===2,∵是的中点,∴BE=BA=,∵,,∴∠A′BC=∠ABC=45°,∴∠A′BA=90°,∴PA+PE的最小值=A′E===.故答案为:;(2)如图3,作点C关于直线AB的对称点C′,作C′N⊥AC于N交AB于M,连接AC′,则C′A=CA=2,∠C′AB=∠CAB=30°,∴△C′AC为等边三角形,∴∠AC′N=30°,∴AN=C′A=1,∴CM+MN的最小值为C′N==.【点睛】本题考查的是轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含30°角的直角三角形的性质、垂线段最短,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段.模型2、将军饮马--两动一定求线段和的最小值【模型探究】已知定点A位于定直线m,n的内侧,在直线m、n分别上求点P、Q点PA+PQ+QA周长最短.辅助线:过点A作关于定直线m、n的对称点A’、A’’,连接A’A’’交直线m、n于点P、Q,则PA+PQ+QA的最小值为A’A’’.例1.如图,在锐角△ABC中,∠ACB=50°;边AB上有一定点P,M、N分别是AC和BC边上的动点,当△PMN的周长最小时,∠MPN的度数是()A.50° B.60° C.70° D.80°【答案】D【解析】∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°,∴∠C+∠EPF=180°,∵∠C=50°,∠D+∠G+∠EPF=180°,∴∠D+∠G=50°,由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=50°,∴∠MPN=130°﹣50°=80°,选D.例2.(2022·安徽·合肥市八年级阶段练习)如图,在平面直角坐标系中,∠AOB=30°,P(5,0),在OB上找一点M,在OA上找一点N,使△PMN周长最小,则此时△PMN的周长为___.【答案】5【分析】作点P关于OB的对称点C,作P点关于AO的对称点D,连接CD交OA于N,交OB于M,连接MP,NP,OC,OD,当C、M、N、D点共线时,△PMN的周长最小,由题意可知△OCD是等边三角形,则CD=5即为所求.【详解】作点P关于OB的对称点C,作P点关于AO的对称点D,连接CD交OA于N,交OB于M,连接MP,NP,OC,OD,∴CM=MP,NP=DN,∴PM+PN+MN=CM+MN+DN≥CD,∴当C、M、N、D点共线时,△PMN的周长最小,∵∠BOA=30°,OP=OC=OB,∴∠COD=60°,∴△OCD是等边三角形,∴CD=OP,∵P(5,0),∴OP=5,∴CD=5,∴△PMN的周长最小值为5,故答案为:5.【点睛】本题考查了图形的对称、等边三角形的判定与性质、两点间线段最短等知识,作点P分别关于OA、OB的对称点是关键,把求三角形周长的最小值转化为两点间线段的长度.例3.(2023.山东八年级期末)如图所示,在四边形ABCD中,∠A=90º,∠C=90º,∠D=60º,AD=3,AB=,若点M、N分别为边CD,AD上的动点,则△BMN的周长最小值为() A. B. C.6 D.3【答案】C【解析】作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,连接MB、NB;再DC和AD上分别取一动点M’和N’(不同于点M和N),连接M'B,M'B',N’B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B",B'M'=BM',B"N'=BN',∴BM'+M'N'+BN'>B'B",又∵B'B"=B'M+MN+NB",MB=MB',NB=NB'',∴NB+NM+BM<BM'+M’N'+BN',=NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B’’D的延长线于点H,如图示2所示:在Rt△ABD中,AD=3,AB=,,∴∠2=30º,∴∠5=30º,DB=DB'',又∵∠ADC=∠1+∠2=60º,∴∠1=30º,∴∠7=30º,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120º,DB'=DB''=DB=,又∵∠B'DB"+∠6=180º,∴∠6=60º,∴HD=,HB'=3,在Rt△B'HB''中,由勾股定理得:B'B"=,∴=NB+NM+BM=6,故选C.模型3、将军饮马--两动两定求线段和的最小值【模型探究】A,B为定点,在定直线m、n上分别找两点P、Q,使PA+PQ+QB最小。(1)如图1,两个点都在直线外侧:辅助线:连接AB交直线m、n于点P、Q,则PA+PQ+QB的最小值为AB.(2)如图2,一个点在内侧,一个点在外侧:辅助线:过点B作关于定直线n的对称点B’,连接AB’交直线m、n于点P、Q,则PA+PQ+QB的最小值为AB’.图1图2(3)如图3,两个点都在内侧:辅助线:过点A、B作关于定直线m、n的对称点A’、B’,连接A’B’交直线m、n于点P、Q,则PA+PQ+QA的最小值为A’B’.(4)如图4,台球两次碰壁模型:辅助线:同图3辅助线作法。图3图4例1.(2023.浙江八年级期中)如图所示,∠AOB=50°,∠BOC=30°,OM=12,ON=4.点P、Q分别是OA、OB上动点,则MQ+PQ+NP的最小值是.【解答】解:如图,作点N关于OA的对称点N′,则NP=N′P,作点M关于OB的对称点M′,则MQ=M′Q,∴MQ+PQ+NP=M′Q+PQ+N′P,当N′M′在同一条直线上时取最小值,连接ON′,OM′,∵∠AOB=50°,∠BOC=30°则∠N′OA=∠AOC=∠AOB﹣∠BOC=20°,∠BOM′=∠BOA=50°,∴∠N′OM′=2×20°+30°+50°=120°,∵ON′=ON=4,OM′=OM=12,∴∠AON=∠AOB﹣∠BOC=50°﹣30°=20°,先作射线ON'与射线ON关于OA对称,由对称的性质可知∠AON'=20°,PN=PN',同理作射线OM'与射线OM关于OB对称,同理∠BOM'=50°,QM=QM′,当N'、P、Q、M'四点共线时,MQ+PQ+NP最小,则∠N′OM′=∠N′OP+∠AOB+∠BPM′=20°+50°+50°=120°,作N'垂直OM'的延长线交于点E,∴∠EON'=60°,∴ON'=ON=4,在Rt△N'OE中,∠EN'O=30°,根据30°角所对的直角边是斜边的一半可知OE=2,则EN'=2,OM=OM'=12,∴EM′=OE+OM′=12+2=14,则N′M===4.故答案为:4.例2.(2022·湖北武汉市·九年级期中)如图,点A在y轴上,G、B两点在x轴上,且G(﹣3,0),B(﹣2,0),HC与GB关于y轴对称,∠GAH=60°,P、Q分别是AG、AH上的动点,则BP+PQ+CQ的最小值是()A.6 B.7 C.8 D.9【答案】B【分析】分别作B、C关于AG和AH对称的点、,连接BP、CQ、、,PQ,得出BP+PQ+CQ的最小值为,再依据等边三角形的性质和判定和轴对称的性质分别求得和即可求得.【详解】解:分别作B、C关于AG和AH对称的点、,连接BP、CQ、、,PQ∵HC与GB关于y轴对称,∴GO=HO,BO=CO,∵x轴⊥y轴,∴AG=AH,、关于y轴对称,∴当、,P、Q在同一条直线上时,最小,此时轴,∵∠GAH=60°,∴△AGH为等边三角形,∴∠AGO=60°,∵轴,B、关于AG对称,∴,,∴△BPG为等边三角形,过作PM⊥GO交x轴与M,∵G(﹣3,0),B(﹣2,0),∴BG=1,BO=2,∴,∴,同理可得,即.故选:B.【点睛】本题考查轴对称的性质,等边三角形的性质和判断,坐标与图形变化.能借助轴对称的性质正确变形将折线的长化成一条线段的长是解题关键.例3.(2022·湖北青山·八年级期中)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,以BC为边向左作等边△BCE,点D为AB中点,连接CD,点P、Q分别为CE、CD上的动点.(1)求证:△ADC为等边三角形;(2)求PD+PQ+QE的最小值.【答案】(1)证明见解析;(2)4.【分析】(1)先根据直角三角形的性质可得,再根据等边三角形的判定即可得证;(2)连接,先根据等边三角形的性质可得,再根据等腰三角形的三线合一可得垂直平分,然后根据线段垂直平分线的性质可得,同样的方法可得,从而可得,最后根据两点之间线段最短即可得出答案.【详解】证明:(1)在中,,,点是斜边的中点,,是等边三角形;(2)如图,连接,和都是等边三角形,,,,垂直平分,,同理可得:垂直平分,,,由两点之间线段最短可知,当点共线时,取得最小值,故的最小值为4.【点睛】本题考查了等边三角形的判定与性质、含角的直角三角形的性质等知识点,熟练掌握等边三角形的性质是解题关键.模型4、将军饮马--线段差的最大值【模型探究】A,B为定点,在定直线m上分别找两点P,使PA与PB的差最大。(1)如图1,点A、B在直线m同侧:辅助线:延长AB交直线m于点P,根据三角形两边之差小于第三边,P’A—P’B<AB,而PA—PB=AB此时最大,因此点P为所求的点。(2)如图2,点A、B在直线m异侧:辅助线:过B作关于直线m的对称点B’,连接AB’交点直线m于P,此时PB=PB’,PA-PB最大值为AB’图1图2例1.(2022·福建福州·八年级期中)如图,在等边中,E是边的中点,P是的中线上的动点,且,则的最大值是________.【答案】3【分析】连接PC,则BP=CP,=CP-PE,当点P与点A重合时,CP-PE=CE,进而即可求解.【详解】解:连接PC,∵在等边中,,P是的中线上的动点,∴AD是BC的中垂线,∴BP=CP,∴=CP-PE,∵在中,CP-PE<CE,∴当点P与点A重合时,CP-PE=CE,∵E是边的中点,∴的最大值=6÷2=3.故答案是:3.【点睛】本题考查等边三角形的性质,三角形三边长关系,连接CP,得到=CP-PE,是解题的关键.例2.(2023·重庆·八年级专题练习)如图,四边形中,,,点为直线左侧平面上一点,的面积为则的最大值为___.【答案】10【分析】如图,过点F作FH⊥EC于H.过点F作直线l//EC,作点C关于直线l的对称点C',连接AC'交直线l于F',此时|F'A−F'C'|的值最大,即|FA−FC|的值最大,最大值为线段AC'的长.【详解】解:如图,过点F作FH⊥EC于H.∵△CFE的面积为8,即EC⋅FH=8,CE=8,∴FH=2,过点F作直线l//EC,作点C关于直线l的对称点C',连接AC'交直线l于F',此时|F'A−F'C'|的值最大,即|FA−FC|的值最大,最大值为线段AC'的长,过点C'作C'K⊥AB于K.∵∠C'KB=∠KEC=∠ECC'=90°,∴四边形CEKC'是矩形,∴CC'=EK=4,EC=KC'=8,∵AE=10,∴AK=AE−EK=10−4=6,∴AC'=,∴|FA−FC|的最大值为10.故答案为10.【点睛】本题考查轴对称−最短问题,三角形的面积,直角梯形等知识,解题的关键是学会利用轴对称解决最值问题,属于中考填空题中的压轴题.例3.(2022·重庆大渡口·七年级期末)如图,,∠ACB=90°,BC=AC=4,平面内直线BC的左侧有一点P,连接BP,CP,,将沿BC翻折至同一平面得到,连接.若取得最大值时,则______.【答案】12【分析】如图1中,过点P作PH⊥BC于点H.求出PH=2,推出点P在BC的中垂线上运动,由翻折变换的性质可知,BP=BP′,推出|AP′﹣PB|=|AP′﹣BP′|≥AB=4,推出当A,B,P′共线时,|AP′﹣PB|的值最小,如图2中,设BC的中垂线交AC于点M,交AB于点N.则NM=AM=MC=2,PN=PP′=4,求出PM,即可解决问题.【详解】解:如图1中,过点P作PH⊥BC于点H.∵AB=CB=4,∠ACB=90°,∴ABBC=4,∵S△BCP=4,∴4×PH=4,∴PH=2,∴点P在BC的中垂线上运动,由翻折变换的性质可知,BP=BP′,∴|AP′﹣PB|=|AP′﹣BP′|≥AB=4,∴当A,B,P′共线时,|AP′﹣PB|的值最小,如图2中,设BC的中垂线交AC于点M,交AB于点N.则NM=AM=MC=2,PN=PP′=4,∴PM=4+2=6,∴S△ACP′AC×PM4×6=12,故答案为:12.【点睛】本题考查翻折变换,等腰直角三角形的性质,三角形的面积等知识,解题的关键是正确寻找点P的运动轨迹,属于中考填空题中的压轴题.课后专项训练1.(2022·河南八年级期末)如图,在中,,,,,平分交于点,,分别是,边上的动点,则的最小值为__________.【答案】【分析】在上取点,使,连接,过点作,垂足为.利用角的对称性,可知,则EC+EF的最小值即为点C到AB的垂线段CH的长度,进而即可求解.【详解】解:如图,在上取点,使,连接,过点作,垂足为.平分,根据对称可知.,.,当点、、共线,且点与点重合时,的值最小,最小值为CH=,故答案为.【点睛】本题考查了轴对称-线段和最小值问题,添加辅助线,把两条线段的和的最小值化为点到直线的距离问题,是解题的关键.2.(2022·四川成都·七年级期末)如图,分别以线段AB的两个端点为圆心,以大于AB长为半径作弧,两弧交于点M和点N,在直线MN上取一点C,连接CA,CB,点D是线段AC的延长线上一点,且CD=AC,点P是直线MN上一动点,连接PD,PB,若BC=4,则PD+PB的最小值为___.【答案】6【分析】根据轴对称的性质和垂直平分线的性质判断即可;【详解】解:由作法得MN垂直平分AB,∴CA=CB=4,PA=PB,∵CD=AC=2,∴AD=6,∵PA+PD≤AD(点A、P、D共线时取等号),∴PA+PD的最小值为6,∴PB+PD的最小值为6.故答案为6.【点睛】本题主要考查了垂直平分线的性质和轴对称最短距离问题,准确分析计算是解题的关键.3.(2022·安徽芜湖市·八年级期末)如图,在中.,若,,,将折叠,使得点C恰好落在AB边上的点E处,折痕为AD,点P为AD上一动点,则的周长最小值为___.【答案】20.【分析】根据由沿AD对称,得到,进而表示出,最后求周长即可.【详解】由沿AD对称得到,则E与C关于直线AD对称,,∴,如图,连接,由题意得,∴,当P在BC边上,即D点时取得最小值12,∴周长为,最小值为.故答案为:20.【点睛】本题考查了三角形折叠问题,正确读懂题意是解本题的关键.4.(云南省红河哈尼族彝族自治州建水县2021-2022学年八年级上学期期末数学试题)如图,在等边中,BC边上的高,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在最小值,则这个最小值是(

)A.5 B.6 C.7 D.8【答案】B【分析】先连接CE,再根据EB=EC,将FE+EB转化为FE+CE,最后根据两点之间线段最短,求得CF的长,即为FE+EB的最小值.【详解】解:如图,连接CE,∵等边△ABC中,AD是BC边上的中线,∴AD是BC边上的高线,即AD垂直平分BC,∴EB=EC,∴BE+EF=CE+EF,∴当C、F、E三点共线时,EF+EC=EF+BE=CF,∵等边△ABC中,F是AB边的中点,∴AD=CF=6,即EF+BE的最小值为6.故选:B【点睛】本题主要考查了等边三角形的性质,轴对称性质等知识,熟练掌握和运用等边三角形的性质以及轴对称的性质是解决本题的关键.解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.5.(2022·山东山东·八年级期末)如图,在平面直角坐标系中,线段所在直线的解析式为,是的中点,是上一动点,则的最小值是(

)A. B. C. D.【答案】C【分析】作点关于的对称点,连接,与的交点,即符和条件的点,再求出,的坐标,根据勾股定理求出的值,即为的最小值.【详解】作点关于的对称点,连接交于,此时,的值最小,最小值为的长,∵线段所在直线的解析式为,∴,,∴,,是的中点,∴,∵是点关于的对称点,∴,,,∴四边形是正方形,∴,∴的最小值是.故选:C.【点睛】本题考查一次函数求点的坐标和性质,轴对称最短路径问题,勾股定理,掌握轴对称最短路径的确定方法是解题的关键.6.(2022·河南安阳市·八年级期末)如图,在中,,,的面积为12,于点D,直线EF垂直平分BC交AB于点E,交BC于点F,P是线段EF上的一个动点,则的周长的最小值是()A.6 B.7 C.10 D.12【答案】B【分析】根据等腰三角形三线合一的性质可知为底边上的高线,根据面积关系即可求得的长,根据垂直平分线的性质可知点和点关于直线EF对称,所以当与重合时,的值最小,根据和的长度即可求得周长的最小值.【详解】如图∵的面积为12,∴,,解得,,∵直线EF垂直平分BC交AB于点E,∴点和点关于直线EF对称,∴当与重合时,的值最小,最小值等于的长,∴周长的最小值是,故选:B.【点睛】本题考查了等腰三角形的性质、垂直平分线的性质、轴对称最短路线问题的应用、三角形的面积等,解题的关键是准确找出点的位置.7.(2022•芜湖期末)如图,在锐角三角形ABC中,AB=4,△ABC的面积为8,BD平分∠ABC.若M、N分别是BD、BC上的动点,则CM+MN的最小值是()A.2 B.4 C.6 D.8【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【答案】解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N∴M′N′=M′E,∴CE=CM′+M′E∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.∵三角形ABC的面积为8,AB=4,∴×4•CE=8,∴CE=4.即CM+MN的最小值为4.故选:B.【点睛】本题考查的是轴对称﹣最短路线问题,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.8.(2022·河南·安阳市殷都区教科培中心八年级期末)如图,在中,,边的垂直平分线分别交,于点,,点是边的中点,点是上任意一点,连接,,若,,周长最小时,,之间的关系是(

)A. B. C. D.【答案】C【分析】连接AP,根据线段垂直垂直平分线的性质可知PA=PC,.由,即得出,由此可知当A、P、D在同一直线上时,最小.再根据等腰三角形“三线合一”的性质可知AD为的平分线,即.最后根据三角形外角性质即得出,由此即可判断.【详解】如图,连接AP,∵直线MN是线段AC的垂直平分线,且P在线段MN上,∴PA=PC,.∵,∴.由图可知CD为定值,当A、P、D在同一直线上时,最小,即为的长,∴此时最小.∵D是边BC的中点,AB=AC,∴AD为的平分线,∴.∵,即,∴.故选C【点睛】本题考查线段垂直垂直平分线的性质,等腰三角形的性质,角平分线的定义以及三角形外角性质.根据题意理解当A、P、D在同一直线上时最小是解题关键.9.(2022·广东广州·八年级期末)如图,点D是∠FAB内的定点且AD=2,若点C、E分别是射线AF、AB上异于点A的动点,且△CDE周长的最小值是2时,∠FAB的度数是()A.30° B.45° C.60° D.90°【答案】A【分析】作D点分别关于AF、AB的对称点G、H,连接GH分别交AF、AB于C′、E′,利用轴对称的性质得AG=AD=AH=2,利用两点之间线段最短判断此时△CDE周长最小为DC′+DE′+C′E′=GH=2,可得△AGH是等边三角形,进而可得∠FAB的度数.【详解】解:如图,作D点分别关于AF、AB的对称点G、H,连接GH分别交AF、AB于C′、E′,连接DC′,DE′,此时△CDE周长最小为DC′+DE′+C′E′=GH=2,根据轴对称的性质,得AG=AD=AH=2,∠DAF=∠GAF,∠DAB=∠HAB,∴AG=AH=GH=2,∴△AGH是等边三角形,∴∠GAH=60°,∴∠FAB=∠GAH=30°,故选:A.【点睛】本题考查了轴对称-最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.11.(2022·湖北·武汉市六中位育中学八年级)如图,,为上一动点,,过作交直线于,过作交直线于点,若,当的值最大时,则________.【答案】123°【分析】当DM与DP重合,AN与AB重合时,|AN-DM|的值最大,此时|AN-DM|=AB,画出相应的图形,根据条件,利用三角形的内角和、邻补角的意义,求出结果.【详解】解:当DM与DP重合,AN与AB重合时,|AN-DM|的值最大,此时|AN-DM|=AB,∵∠ABC=114°,∴∠CDE=180°-114°=66°,∴∠MCD=90°-66°=24°,又∵AB=BC,∴∠ACB=(180°-114°)÷2=33°,∴∠ACE=180°-∠ACB-∠DCM=180°-33°-24°=123°,故答案为:123°.【点睛】本题考查了平行线的性质、三角形内角和、直角三角形、等腰三角形的性质等知识,根据题意画出相应图形是解决问题的关键.12.(2021·全国·八年级专题练习)如图,四边形中,,,点为直线左侧平面上一点,的面积为则的最大值为___.【答案】10【分析】如图,过点F作FH⊥EC于H.过点F作直线l//EC,作点C关于直线l的对称点C',连接AC'交直线l于F',此时|F'A−F'C'|的值最大,即|FA−FC|的值最大,最大值为线段AC'的长.【详解】解:如图,过点F作FH⊥EC于H.∵△CFE的面积为8,即EC⋅FH=8,CE=8,∴FH=2,过点F作直线l//EC,作点C关于直线l的对称点C',连接AC'交直线l于F',此时|F'A−F'C'|的值最大,即|FA−FC|的值最大,最大值为线段AC'的长,过点C'作C'K⊥AB于K.∵∠C'KB=∠KEC=∠ECC'=90°,∴四边形CEKC'是矩形,∴CC'=EK=4,EC=KC'=8,∵AE=10,∴AK=AE−EK=10−4=6,∴AC'=,∴|FA−FC|的最大值为10.故答案为10.【点睛】本题考查轴对称−最短问题,三角形的面积,直角梯形等知识,解题的关键是学会利用轴对称解决最值问题,属于中考填空题中的压轴题.13.(2022·湖北十堰·八年级期末)如图,在四边形ABCD中,.在BC,CD上分别找一点M,N,使周长最小,则的度数为_________.【答案】160°【分析】要使周长最小,即利用点的对称,使三角形的三边在同一直线上,作点A关于BC和CD的对称点,即可得到,进而求得,即可得到答案.【详解】作点A关于BC和CD的对称点,连接,交BC于M,交CD于N,则即为周长最小值,故答案为:160°.【点睛】本题考查的是轴对称—最短路线问题,涉及平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质,熟练掌握知识点是解题的关键.14.(2022·河南濮阳·八年级期末)如图,等边三角形的边长为5,A、B、三点在一条直线上,且.若D为线段上一动点,则的最小值是________.【答案】10【分析】连接CA1交BC1于点E,C、A1关于直线BC1对称,推出当点D与B重合时,AD+CD的值最小,最小值为线段AA1的长=10.【详解】解:连接CA1交BC1于点E,过点B作直线l⊥AB,如图,∵△ABC是等边三角形,∴是等边三角形,AB=A1B=5∵A、B、三点在一条直线上,∴△ABC与△A1BC1关于直线l对称,∵∠ABC=∠A1BC1=60°,∴∠CBC1=60°,∴∠C1BA1=∠C1BC,∵BA1=BC,∴BD⊥CA1,CD=DA1,∴C、A1关于直线BC1对称,∴当点D与B重合时,AD+CD的值最小,最小值为线段AA1的长=10,故答案为:10.【点睛】本题考查轴对称﹣最短问题,等边三角形的性质等知识,解题的关键是学会找对称点,形成两点之间的线段来解决最短问题,属于中考常考题型.15.如图,∠AOB=45°,P是∠AOB内的一点,PO=10,点Q,R分别在∠AOB的两边上,△PQR周长的最小值是.【解答】解:如图所示,分别作点P关于OA、OB的对称点P'、P'',连接P'P''交OA、OB于点Q、R,此时,△PQR的周长最小,最小即为P'P''的长.连接OP',OP''.根据轴对称性可得:∠P''OB=∠BOP,∠P'OA=∠AOP,OP=OP'=OP''=10,∵∠AOB=45°,∴∠P'OP''=90°,∴P'P''===.故答案为:10.16.如图,在Rt△ABC中,∠A=90°,AB=4,AC=3,M、N、P分别是边AB、AC、BC上的动点,连接PM、PN和MN,则PM+PN+MN的最小值是.【解答】解:如图,作点P关于AB,AC的对称点E,F,连接PE,PF,PA,EM,FN,AE,AF.∵∠BAC=90°,AB=4,AC=3,∴BC===5,由对称

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论