广西河池市2023-2024学年高三第二学期第一学段考试数学试题试卷_第1页
广西河池市2023-2024学年高三第二学期第一学段考试数学试题试卷_第2页
广西河池市2023-2024学年高三第二学期第一学段考试数学试题试卷_第3页
广西河池市2023-2024学年高三第二学期第一学段考试数学试题试卷_第4页
广西河池市2023-2024学年高三第二学期第一学段考试数学试题试卷_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西河池市2022-2023学年高三第二学期第一学段考试数学试题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为()A. B. C. D.2.设,,则()A. B.C. D.3.在平面直角坐标系中,将点绕原点逆时针旋转到点,设直线与轴正半轴所成的最小正角为,则等于()A. B. C. D.4.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为()A. B. C. D.5.如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为()A. B. C. D.6.给出个数,,,,,,其规律是:第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能()A.; B.;C.; D.;7.已知等差数列满足,公差,且成等比数列,则A.1 B.2 C.3 D.48.在中,“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.双曲线的渐近线方程是()A. B. C. D.10.已知函数,,且,则()A.3 B.3或7 C.5 D.5或811.设,,,则、、的大小关系为()A. B. C. D.12.若,则函数在区间内单调递增的概率是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的图象在点处的切线方程是,则的值等于__________.14.已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为.15.已知函数,若方程的解为,(),则_______;_______.16.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等比数列中,.(Ⅰ)求的通项公式;(Ⅱ)记为的前项和.若,求.18.(12分)已知函数.(1)求不等式的解集;(2)若不等式在上恒成立,求实数的取值范围.19.(12分)如图是圆的直径,垂直于圆所在的平面,为圆周上不同于的任意一点(1)求证:平面平面;(2)设为的中点,为上的动点(不与重合)求二面角的正切值的最小值20.(12分)已知双曲线及直线.(1)若l与C有两个不同的交点,求实数k的取值范围;(2)若l与C交于A,B两点,O是原点,且,求实数k的值.21.(12分)已知椭圆E:()的离心率为,且短轴的一个端点B与两焦点A,C组成的三角形面积为.(Ⅰ)求椭圆E的方程;(Ⅱ)若点P为椭圆E上的一点,过点P作椭圆E的切线交圆O:于不同的两点M,N(其中M在N的右侧),求四边形面积的最大值.22.(10分)设函数.(1)若函数在是单调递减的函数,求实数的取值范围;(2)若,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.【详解】当时,则,,所以,,显然当时,,故,,若对于任意正整数不等式恒成立,即对于任意正整数恒成立,即对于任意正整数恒成立,设,,令,解得,令,解得,考虑到,故有当时,单调递增,当时,有单调递减,故数列的最大值为,所以.故选:C.【点睛】本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.2.D【解析】

由不等式的性质及换底公式即可得解.【详解】解:因为,,则,且,所以,,又,即,则,即,故选:D.【点睛】本题考查了不等式的性质及换底公式,属基础题.3.A【解析】

设直线直线与轴正半轴所成的最小正角为,由任意角的三角函数的定义可以求得的值,依题有,则,利用诱导公式即可得到答案.【详解】如图,设直线直线与轴正半轴所成的最小正角为因为点在角的终边上,所以依题有,则,所以,故选:A【点睛】本题考查三角函数的定义及诱导公式,属于基础题.4.B【解析】由题,侧棱底面,,,,则根据余弦定理可得,的外接圆圆心三棱锥的外接球的球心到面的距离则外接球的半径,则该三棱锥的外接球的表面积为点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径公式是解答的关键.5.D【解析】

使用不同方法用表示出,结合平面向量的基本定理列出方程解出.【详解】解:,又解得,所以故选:D【点睛】本题考查了平面向量的基本定理及其意义,属于基础题.6.A【解析】

要计算这个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②.【详解】因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句①应为,第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,这样可以确定语句②为,故本题选A.【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.7.D【解析】

先用公差表示出,结合等比数列求出.【详解】,因为成等比数列,所以,解得.【点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.8.D【解析】

通过列举法可求解,如两角分别为时【详解】当时,,但,故充分条件推不出;当时,,但,故必要条件推不出;所以“”是“”的既不充分也不必要条件.故选:D.【点睛】本题考查命题的充分与必要条件判断,三角函数在解三角形中的具体应用,属于基础题9.C【解析】

根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.10.B【解析】

根据函数的对称轴以及函数值,可得结果.【详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题11.D【解析】

因为,,所以且在上单调递减,且所以,所以,又因为,,所以,所以.故选:D.【点睛】本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.12.B【解析】函数在区间内单调递增,,在恒成立,在恒成立,,函数在区间内单调递增的概率是,故选B.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

利用导数的几何意义即可解决.【详解】由已知,,,故.故答案为:.【点睛】本题考查导数的几何意义,要注意在某点的切线与过某点的切线的区别,本题属于基础题.14.【解析】由已知,即,取双曲线顶点及渐近线,则顶点到该渐近线的距离为,由题可知,所以,则所求双曲线方程为.15.【解析】

求出在上的对称轴,依据对称性可得的值;由可得,依据可求出的值.【详解】解:令,解得因为,所以关于对称.则.由,则由可知,,又因为,所以,则,即故答案为:;.【点睛】本题考查了三角函数的对称轴,考查了诱导公式,考查了同角三角函数的基本关系.本题的易错点在于没有正确判断的取值范围,导致求出.在求的对称轴时,常用整体代入法,即令进行求解.16.【解析】

根据三视图知该几何体是三棱柱与半圆锥的组合体,结合图中数据求出它的体积.【详解】根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示:结合图中数据,计算它的体积为.故答案为:.【点睛】本题考查了根据三视图求简单组合体的体积应用问题,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)或(Ⅱ)12【解析】

(1)先设数列的公比为,根据题中条件求出公比,即可得出通项公式;(2)根据(1)的结果,由等比数列的求和公式,即可求出结果.【详解】(1)设数列的公比为,,,或.(2)时,,解得;时,,无正整数解;综上所述.【点睛】本题主要考查等比数列,熟记等比数列的通项公式与求和公式即可,属于基础题型.18.(1);(2)【解析】

(1)分类讨论去绝对值号,即可求解;(2)原不等式可转化为在R上恒成立,分别求函数与的最小值,根据能同时成立,可得的最小值,即可求解.【详解】(1)①当时,不等式可化为,得,无解;②当-2≤x≤1时,不等式可化为得x>0,故0<x≤1;③当x>1时,不等式可化为,得x<2,故1<x<2.综上,不等式的解集为(2)由题意知在R上恒成立,所以令,则当时,又当时,取得最小值,且又所以当时,与同时取得最小值.所以所以,即实数的取值范围为【点睛】本题主要考查了含绝对值不等式的解法,分类讨论,函数的最值,属于中档题.19.(1)见解析(2)【解析】

(1)推导出,,从而平面,由面面垂直的判定定理即可得证.(2)过作,以为坐标原点,建立如图所示空间坐标系,设,利用空间向量法表示出二面角的余弦值,当余弦值取得最大时,正切值求得最小值;【详解】(1)因为,面,,平面,平面,平面,又平面,平面平面;(2)过作,以为坐标原点,建立如图所示空间坐标系,则,设,则平面的一个法向量为设平面的一个法向量为则,即,令,如图二面角的平面角为锐角,设二面角为,则,时取得最大值,最大值为,则最小值为【点睛】本题考查面面垂直的证明,利用空间向量法解决立体几何问题,属于中档题.20.(1);(2)或.【解析】

(1)联立直线方程与双曲线方程,消去,得到关于的一元二次方程,根据根的判别式,即可求出结论;(2)设,由(1)可得关系,再由直线l过点,可得,进而建立关于的方程,求解即可.【详解】(1)双曲线C与直线l有两个不同的交点,则方程组有两个不同的实数根,整理得,,解得且.双曲线C与直线l有两个不同交点时,k的取值范围是.(2)设交点,直线l与y轴交于点,,.,即,整理得,解得或或.又,或时,的面积为.【点睛】本题考查直线与双曲线的位置关系、三角形面积计算,要熟练掌握根与系数关系解决相交弦问题,考查计算求解能力,属于中档题.21.(Ⅰ);(Ⅱ)4.【解析】

(Ⅰ)结合已知可得,求出a,b的值,即可得椭圆方程;(Ⅱ)由题意可知,直线的斜率存在,设出直线方程,联立直线方程与椭圆方程,利用判别式等于0可得,联立直线方程与圆的方程,结合根与系数的关系求得,利用弦长公式及点到直线的距离公式,求出,得到,整理后利用基本不等式求最值.【详解】解:(Ⅰ)可得,结合,解得,,,得椭圆方程;(Ⅱ)易知直线的斜率k存在,设:,由,得,由,得,∵,设点O到直线:的距离为d,,,由,得,,,∴∴,∴而,,易知,∴,则,四边形的面积当且仅当,即时取“”.∴四边形面积的最大值为4.【点睛】本题考查了由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论