中考数学二轮培优复习专题46 中考解答题最常考题型方程(组)与一元一次不等式(组)的实际应用(解析版)_第1页
中考数学二轮培优复习专题46 中考解答题最常考题型方程(组)与一元一次不等式(组)的实际应用(解析版)_第2页
中考数学二轮培优复习专题46 中考解答题最常考题型方程(组)与一元一次不等式(组)的实际应用(解析版)_第3页
中考数学二轮培优复习专题46 中考解答题最常考题型方程(组)与一元一次不等式(组)的实际应用(解析版)_第4页
中考数学二轮培优复习专题46 中考解答题最常考题型方程(组)与一元一次不等式(组)的实际应用(解析版)_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题46方程(组)与一元一次不等式(组)的实际应用(解析版)模块一中考真题集训1.(2022•阜新)某公司引入一条新生产线生产A,B两种产品,其中A产品每件成本为100元,销售价格为120元,B产品每件成本为75元,销售价格为100元,A,B两种产品均能在生产当月全部售出.(1)第一个月该公司生产的A,B两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A,B两种产品各多少件?(2)下个月该公司计划生产A,B两种产品共180件,且使总利润不低于4300元,则B产品至少要生产多少件?思路引领:(1)设生产A产品x件,B产品y件,根据题意列出方程组,求出即可;(2)设B产品生产m件,则A产品生产(180﹣m)件,根据题意列出不等式组,求出即可.解:(1)设生产A产品x件,B产品y件,根据题意,得100x+75y=8250,解这个方程组,得x=30,y=70.所以,生产A产品30件,B产品70件.(2)设B产品生产m件,则A产品生产(180﹣m)件,根据题意,得(100﹣75)m+(120﹣100)(180﹣m)≥4300,解这个不等式,得m≥140.所以,B产品至少生产140件.总结提升:本题考查了二元一次方程组和一元一次不等式组的应用,能根据题意列出方程组和不等式组是解此题的关键.2.(2022•资阳)北京冬奥会吉祥物“冰墩墩”深受大家的喜爱,人们争相购买.现有甲、乙两种型号的“冰墩墩”,已知一个甲种型号比一个乙种型号多20元,购买甲、乙两种型号各10个共需1760元.(1)求甲、乙两种型号的“冰墩墩”单价各是多少元?(2)某团队计划用不超过4500元购买甲、乙两种型号的“冰墩墩”共50个,求最多可购买多少个甲种型号的“冰墩墩”?思路引领:(1)根据题意,设乙种型号的单价是x元,则甲种型号的单价是(x+20)元,根据“购买甲、乙两种型号各10个共需1760元”的等量关系列出一元一次方程,解出方程即可得出答案;(2)根据题意,设购买甲种型号的“冰墩墩”a个,则购买乙种型号的“冰墩墩”(50﹣a)个,根据“计划用不超过4500元”列出不等式,即可得出答案.解:(1)设乙种型号的单价是x元,则甲种型号的单价是(x+20)元,根据题意得:10(x+20)+10x=1760,解得:x=78,∴x+20=78+20=98,答:甲种型号的单价是98元,乙种型号的单价是78元;(2)设购买甲种型号的“冰墩墩”a个,则购买乙种型号的“冰墩墩”(50﹣a)个,根据题意得:98a+78(50﹣a)≤4500,解得:a≤30,∴a最大值是30,答:最多可购买甲种型号的“冰墩墩”30个.总结提升:本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意找出等量关系和数量关系是本题的关键.3.(2022•朝阳)某中学要为体育社团购买一些篮球和排球,若购买3个篮球和2个排球,共需560元;若购买2个篮球和4个排球,共需640元.(1)求每个篮球和每个排球的价格分别是多少元;(2)该中学决定购买篮球和排球共10个,总费用不超过1100元,那么最多可以购买多少个篮球?思路引领:(1)设每个篮球的价格是x元,每个排球的价格是y元,可得:3x+2y=5602x+4y=640(2)设购买m个篮球,可得:120m+100(10﹣m)≤1100,即可解得最多可以购买5个篮球.解:(1)设每个篮球的价格是x元,每个排球的价格是y元,根据题意得:3x+2y=5602x+4y=640解得x=120y=100∴每个篮球的价格是120元,每个排球的价格是100元;(2)设购买m个篮球,根据题意得:120m+100(10﹣m)≤1100,解得m≤5,答:最多可以购买5个篮球.总结提升:本题考查二元一次方程组和一元一次不等式的应用,解题的关键是读懂题意,列出方程组和不等式.4.(2022•六盘水)钢钢准备在重阳节购买鲜花到敬老院看望老人,现将自己在劳动课上制作的竹篮和陶罐拿到学校的“跳蚤市场”出售,以下是购买者的出价:(1)根据对话内容,求钢钢出售的竹篮和陶罐数量;(2)钢钢接受了钟钟的报价,交易后到花店购买单价为5元/束的鲜花,剩余的钱不超过20元,求有哪几种购买方案.思路引领:(1)设出售的竹篮x个,陶罐y个,根据“每个竹篮5元,每个陶罐12元共需61元;每个竹篮6元,每个陶罐10元共需60元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买鲜花a束,根据总价=单价×数量结合剩余的钱不超过20元,即可得出关于a的一元一次不等式组,解之取其中的整数值,即可得出各购买方案.解:(1)设出售的竹篮x个,陶罐y个,依题意有:5x+12y=616x+10y=60解得:x=5y=3故出售的竹篮5个,陶罐3个;(2)设购买鲜花a束,依题意有:0<61﹣5a≤20,解得8.2≤a<12.2,∵a为整数,∴共有4种购买方案,方案一:购买鲜花9束;方案二:购买鲜花10束;方案三:购买鲜花11束;方案四:购买鲜花12束.总结提升:本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.5.(2022•安顺)阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.(1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?思路引领:(1)设普通水稻的亩产量是x千克,则杂交水稻的亩产量是2x千克,利用种植亩数=总产量÷亩产量,结合A块试验田比B块试验田少4亩,即可得出关于x的分式方程,解之即可得出普通水稻的亩产量,再将其代入2x中即可求出杂交水稻的亩产量;(2)设把y亩B块试验田改种杂交水稻,利用总产量=亩产量×种植亩数,结合总产量不低于17700千克,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.解:(1)设普通水稻的亩产量是x千克,则杂交水稻的亩产量是2x千克,依题意得:7200x解得:x=600,经检验,x=600是原方程的解,且符合题意,则2x=2×600=1200.答:普通水稻的亩产量是600千克,杂交水稻的亩产量是1200千克;(2)设把y亩B块试验田改种杂交水稻,依题意得:9600+600(7200600−y)+1200y解得:y≥1.5.答:至少把1.5亩B块试验田改种杂交水稻.总结提升:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.6.(2022•湘西州)为了传承雷锋精神,某中学向全校师生发起“献爱心”募捐活动,准备向西部山区学校捐赠篮球、足球两种体育用品.已知篮球的单价为每个100元,足球的单价为每个80元.(1)原计划募捐5600元,全部用于购买篮球和足球,如果恰好能够购买篮球和足球共60个,那么篮球和足球各买多少个?(2)在捐款活动中,由于师生的捐款积极性高涨,实际收到捐款共6890元,若购买篮球和足球共80个,且支出不超过6890元,那么篮球最多能买多少个?思路引领:(1)设原计划篮球买x个,足球买y个,根据:“恰好能够购买篮球和足球共60个、原计划募捐5600元”列方程组即可解答;(2)设篮球能买a个,则足球(80﹣a)个,根据“实际收到捐款共6890元”列不等式求解即可解答.解:(1)设原计划篮球买x个,足球买y个,根据题意得:x+y=60100x+80y=5600解得:x=40y=20答:原计划篮球买40个,足球买20个.(2)设篮球能买a个,则足球(80﹣a)个,根据题意得:100a+80(80﹣a)≤6890,解得:a≤24.5,答:篮球最多能买24个.总结提升:本题考查了二元一次方程组、一元一次不等式的应用,解决本题的关键是根据题意列出方程组和不等式.7.(2022•西藏)某班在庆祝中国共产主义青年团成立100周年活动中,给学生发放笔记本和钢笔作为纪念品.已知每本笔记本比每支钢笔多2元,用240元购买的笔记本数量与用200元购买的钢笔数量相同.(1)笔记本和钢笔的单价各多少元?(2)若给全班50名学生每人发放一本笔记本或一支钢笔作为本次活动的纪念品,要使购买纪念品的总费用不超过540元,最多可以购买多少本笔记本?思路引领:(1)可设每支钢笔x元,则每本笔记本(x+2)元,根据其数量相同,可列得方程,解方程即可;(2)可设购买y本笔记本,则购买钢笔(50﹣y)支,根据总费用不超过540元,可列一元一次不等式,解不等式即可.解:(1)设每支钢笔x元,依题意得:240x+2解得:x=10,经检验:x=10是原方程的解,故笔记本的单价为:10+2=12(元),答:笔记本每本12元,钢笔每支10元;(2)设购买y本笔记本,则购买钢笔(50﹣y)支,依题意得:12y+10(50﹣y)≤540,解得:y≤20,故最多购买笔记本20本.总结提升:本题主要考查一元一次不等式的应用,分式方程的应用,解答的关键是理解清楚题意,找到等量关系.8.(2022•牡丹江)某工厂准备生产A和B两种防疫用品,已知A种防疫用品每箱成本比B种防疫用品每箱成本多500元.经计算,用6000元生产A种防疫用品的箱数与用4500元生产B种防疫用品的箱数相等,请解答下列问题:(1)求A,B两种防疫用品每箱的成本;(2)该工厂计划用不超过90000元同时生产A和B两种防疫用品共50箱,且B种防疫用品不超过25箱,该工厂有几种生产方案?(3)为扩大生产,厂家欲拿出与(2)中最低成本相同的费用全部用于购进甲和乙两种设备(两种都买).若甲种设备每台2500元,乙种设备每台3500元,则有几种购买方案?最多可购买甲,乙两种设备共多少台?(请直接写出答案即可)思路引领:(1)设B种防疫用品的成本为x元/箱,则A种防疫用品的成本为(x+500)元/箱,利用数量=总价÷单价,结合用6000元生产A种防疫用品的箱数与用4500元生产B种防疫用品的箱数相等,即可得出关于x的分式方程,解之经检验后即可得出B种防疫用品的成本,再将其代入(x+500)中即可求出A种防疫用品的成本;(2)设生产m箱B种防疫用品,则生产(50﹣m)箱A种防疫用品,根据“该工厂计划用不超过90000元同时生产A和B两种防疫用品共50箱,且B种防疫用品不超过25箱”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出该工厂共有6种生产方案;(3)设(2)中的生产成本为w元,利用生产成本=A种防疫用品的成本×生产数量+B种防疫用品的成本×生产数量,即可得出关于w关于m的函数关系式,利用一次函数的性质即可求出(2)中最低成本,设购买a台甲种设备,b台乙种设备,利用总价=单价×数量,即可得出关于a,b的二元一次方程,结合a,b均为正整数,即可得出各购买方案,再将其代入a+b中即可得出结论.解:(1)设B种防疫用品的成本为x元/箱,则A种防疫用品的成本为(x+500)元/箱,依题意得:6000x+500解得:x=1500,经检验,x=1500是原方程的解,且符合题意,∴x+500=1500+500=2000.答:A种防疫用品的成本为2000元/箱,B种防疫用品的成本为1500元/箱.(2)设生产m箱B种防疫用品,则生产(50﹣m)箱A种防疫用品,依题意得:2000(50−m)+1500m≤90000m≤25解得:20≤m≤25.又∵m为整数,∴m可以为20,21,22,23,24,25,∴该工厂共有6种生产方案.(3)设(2)中的生产成本为w元,则w=2000(50﹣m)+1500m=﹣500m+100000,∵﹣500<0,∴w随m的增大而减小,∴当m=25时,w取得最小值,最小值=﹣500×25+100000=87500.设购买a台甲种设备,b台乙种设备,依题意得:2500a+3500b=87500,∴a=35−75又∵a,b均为正整数,∴a=28b=5或a=21b=10或a=14b=15∴a+b=33或31或29或27.∵33>31>29>27,∴共有4种购买方案,最多可购买甲,乙两种设备共33台.总结提升:本题考查了分式方程的应用、一元一次不等式的应用、一次函数的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)找准等量关系,正确列出二元一次方程.9.(2022•郴州)为响应乡村振兴号召,在外地创业成功的大学毕业生小姣毅然返乡当起了新农人,创办了果蔬生态种植基地.最近,为给基地蔬菜施肥,她准备购买甲、乙两种有机肥.已知甲种有机肥每吨的价格比乙种有机肥每吨的价格多100元,购买2吨甲种有机肥和1吨乙种有机肥共需1700元.(1)甲、乙两种有机肥每吨各多少元?(2)若小姣准备购买甲、乙两种有机肥共10吨,且总费用不能超过5600元,则小姣最多能购买甲种有机肥多少吨?思路引领:(1)设甲种有机肥每吨x元,乙种有机肥每吨y元,根据“甲种有机肥每吨的价格比乙种有机肥每吨的价格多100元,购买2吨甲种有机肥和1吨乙种有机肥共需1700元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种有机肥m吨,则购买乙种有机肥(10﹣m)吨,利用总价=单价×数量,结合总价不超过5600元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.解:(1)设甲种有机肥每吨x元,乙种有机肥每吨y元,依题意得:x−y=1002x+y=1700解得:x=600y=500答:甲种有机肥每吨600元,乙种有机肥每吨500元.(2)设购买甲种有机肥m吨,则购买乙种有机肥(10﹣m)吨,依题意得:600m+500(10﹣m)≤5600,解得:m≤6.答:小姣最多能购买甲种有机肥6吨.总结提升:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.10.(2022•辽宁)多功能家庭早餐机可以制作多种口味的美食,深受消费者的喜爱,在新品上市促销活动中,已知8台A型早餐机和3台B型早餐机需要1000元,6台A型早餐机和1台B型早餐机需要600元.(1)每台A型早餐机和每台B型早餐机的价格分别是多少元?(2)某商家欲购进A,B两种型号早餐机共20台,但总费用不超过2200元,那么至少要购进A型早餐机多少台?思路引领:(1)可设A型早餐机每台x元,B型早餐机每台y元,结合所给的条件可列出二元一次方程组,解方程组即可;(2)可设购进A型早餐机n台,结合(1),根据总费用不超过2200元,可列出不等式,从而可求解.解:(1)设A型早餐机每台x元,B型早餐机每台y元,依题意得:8x+3y=10006x+y=600解得:x=80y=120答:每台A型早餐机80元,每台B型早餐机120元;(2)设购进A型早餐机n台,依题意得:80n+120(20﹣n)≤2200,解得:n≥5,答:至少要购进A型早餐机5台.总结提升:本题主要考查一元一次不等式的应用,二元一次方程组的应用,解答的关键是理解清楚题意找到相应的等量关系.11.(2022•哈尔滨)绍云中学计划为绘画小组购买某种品牌的A、B两种型号的颜料,若购买1盒A种型号的颜料和2盒B种型号的颜料需用56元;若购买2盒A种型号的颜料和1盒B种型号的颜料需用64元.(1)求每盒A种型号的颜料和每盒B种型号的颜料各多少元;(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A种型号的颜料?思路引领:(1)设每盒A种型号的颜料x元,每盒B种型号的颜料y元,根据“购买1盒A种型号的颜料和2盒B种型号的颜料需用56元;购买2盒A种型号的颜料和1盒B种型号的颜料需用64元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该中学可以购买m盒A种型号的颜料,则可以购买(200﹣m)盒B种型号的颜料,利用总价=单价×数量,结合总价不超过3920元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.解:(1)设每盒A种型号的颜料x元,每盒B种型号的颜料y元,依题意得:x+2y=562x+y=64解得:x=24y=16答:每盒A种型号的颜料24元,每盒B种型号的颜料16元.(2)设该中学可以购买m盒A种型号的颜料,则可以购买(200﹣m)盒B种型号的颜料,依题意得:24m+16(200﹣m)≤3920,解得:m≤90.答:该中学最多可以购买90盒A种型号的颜料.总结提升:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.12.(2022•玉林)我市某乡村振兴果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨;因龙眼大量上市,价格下跌,第二次购买龙眼的价格为0.3万元/吨,两次购买龙眼共用了7万元.(1)求两次购买龙眼各是多少吨?(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?思路引领:(1)设第一次购买龙眼x吨,则第二次购买龙眼(21﹣x)吨,根据题意列出一元一次方程,解方程即可得出答案;(2)设把y吨龙眼加工成桂圆肉,则把(21﹣y)吨龙眼加工成龙眼干,根据题意列出一元一次不等式,解一元一次不等式即可得出答案.解:(1)设第一次购买龙眼x吨,则第二次购买龙眼(21﹣x)吨,由题意得:0.4x+0.3(21﹣x)=7,解得:x=7,∴21﹣x=21﹣7=14(吨),答:第一次购买龙眼7吨,则第二次购买龙眼14吨;(2)设把y吨龙眼加工成桂圆肉,则把(21﹣y)吨龙眼加工成龙眼干,由题意得:10×0.2y+3×0.5(21﹣y)≥39,解得:y≥15,∴至少需要把15吨龙眼加工成桂圆肉,答:至少需要把15吨龙眼加工成桂圆肉.总结提升:本题考查了一元一次方程和一元一次不等式的应用,根据题意找出题目中的相等关系和不等关系是解决问题的关键.13.(2022•湖北)某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.(1)买一份甲种快餐和一份乙种快餐各需多少元?(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?思路引领:(1)设购买一份甲种快餐需要x元,购买一份乙种快餐需要y元,根据“买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元”,即可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买乙种快餐m份,则购买甲种快餐(55﹣m)份,利用总价=单价×数量,结合总价不超过1280元,即可列出关于m的一元一次不等式,解之取其中的最小值即可得出结论.解:(1)设购买一份甲种快餐需要x元,购买一份乙种快餐需要y元,依题意得:x+2y=702x+3y=120解得:x=30y=20答:购买一份甲种快餐需要30元,购买一份乙种快餐需要20元.(2)设购买乙种快餐m份,则购买甲种快餐(55﹣m)份,依题意得:30(55﹣m)+20m≤1280,解得:m≥37.答:至少买乙种快餐37份.总结提升:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.14.(2022•宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为300元;乙超市的购物金额为240元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?思路引领:(1)利用总价=单价×数量,可求出购买30件这种文化用品所需原价,再结合两超市给出的优惠方案,即可求出在两家超市的购物金额;(2)设购买x件这种文化用品,当0<x≤40时,在甲超市的购物金额为10x元,在乙超市的购物金额为8x元,显然在乙超市支付的费用较少;当x>40时,在甲超市的购物金额为(6x+160)元,在乙超市的购物金额为8x元,分6x+160>8x,6x+160=8x及6x+160<8x三种情况,可求出x的取值范围或x的值,综上,即可得出结论.解:(1)∵10×30=300(元),300<400,∴在甲超市的购物金额为300元,在乙超市的购物金额为300×0.8=240(元).故答案为:300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的购物金额为10x元,在乙超市的购物金额为0.8×10x=8x(元),∵10x>8x,∴选择乙超市支付的费用较少;当x>40时,在甲超市的购物金额为400+0.6(10x﹣400)=(6x+160)(元),在乙超市的购物金额为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.总结提升:本题考查了一元一次不等式的应用以及一元一次方程的应用,根据两超市给出的优惠方案,用含x的代数式表示出在两家超市的购物金额是解题的关键.15.(2022•邵阳)2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?思路引领:(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,利用进货总价=进货单价×进货数量,结合购进“冰墩墩”摆件和挂件共100个且共花费了11400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180﹣m)个,利用总利润=每个的销售利润×销售数量(购进数量),即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.解:(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,依题意得:x+y=18080x+50y=11400解得:x=80y=100答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180﹣m)个,依题意得:(60﹣50)m+(100﹣80)(180﹣m)≥2900,解得:m≤70.答:购进的“冰墩墩”挂件不能超过70个.总结提升:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.16.(2022•绵阳)某水果经营户从水果批发市场批发水果进行零售,部分水果批发价格与零售价格如下表:水果品种梨子菠萝苹果车厘子批发价格(元/kg)45640零售价格(元/kg)56850请解答下列问题:(1)第一天,该经营户用1700元批发了菠萝和苹果共300kg,当日全部售出,求这两种水果获得的总利润?(2)第二天,该经营户依然用1700元批发了菠萝和苹果,当日销售结束清点盘存时发现进货单丢失,只记得这两种水果的批发量均为正整数且菠萝的进货量不低于88kg,这两种水果已全部售出且总利润高于第一天这两种水果的总利润,请通过计算说明该经营户第二天批发这两种水果可能的方案有哪些?思路引领:(1)设第一天,该经营户批发了菠萝xkg,苹果ykg,根据该经营户用1700元批发了菠萝和苹果共300kg,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用总利润=每千克的销售利润×销售数量(购进数量),即可求出结论;(2)设购进mkg菠萝,则购进1700−5m6kg苹果,根据“菠萝的进货量不低于88kg,且这两种水果已全部售出且总利润高于第一天这两种水果的总利润”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m,1700−5m解:(1)设第一天,该经营户批发了菠萝xkg,苹果ykg,依题意得:x+y=3005x+6y=1700解得:x=100y=200∴(6﹣5)x+(8﹣6)y=(6﹣5)×100+(8﹣6)×200=500(元).答:这两种水果获得的总利润为500元.(2)设购进mkg菠萝,则购进1700−5m6kg依题意得:m≥88(6−5)m+(8−6)×解得:88≤m<100.又∵m,1700−5m6∴m可以为88,94,∴该经营户第二天共有2种批发水果的方案,方案1:购进88kg菠萝,210kg苹果;方案2:购进94kg菠萝,205kg苹果.总结提升:本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.17.(2022•内江)为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320学校计划此次劳动实践活动的租金总费用不超过3000元.(1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?(3)学校租车总费用最少是多少元?思路引领:(1)设参加此次劳动实践活动的老师有x人,可得:30x+7=31x﹣1,即可解得参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;(2)根据每位老师负责一辆车的组织工作,知一共租8辆车,设租甲型客车m辆,可得:35m+30(8−m)≥255400m+320(8−m)≤3000,解得m(3)设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,由一次函数性质得学校租车总费用最少是2800元.解:(1)设参加此次劳动实践活动的老师有x人,参加此次劳动实践活动的学生有(30x+7)人,根据题意得:30x+7=31x﹣1,解得x=8,∴30x+7=30×8+7=247,答:参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;(2)师生总数为247+8=255(人),∵每位老师负责一辆车的组织工作,∴一共租8辆车,设租甲型客车m辆,则租乙型客车(8﹣m)辆,根据题意得:35m+30(8−m)≥255400m+320(8−m)≤3000解得3≤m≤5.5,∵m为整数,∴m可取3、4、5,∴一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)∵7×35=245<255,8×35=280>255,∴租车总费用最少时,至少租8辆车,设租甲型客车m辆,则租乙型客车(8﹣m)辆,由(2)知:3≤m≤5.5,设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,∵80>0,∴w随m的增大而增大,∴m=3时,w取最小值,最小值为80×3+2560=2800(元),答:学校租车总费用最少是2800元.总结提升:本题考查一元一次方程,一元一次不等式组及一次函数的应用,解题的关键是读懂题意,列出方程,不等式和函数关系式.18.(2022•泸州)某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?思路引领:(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,根据“购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,利用总价=单价×数量,结合购进A种农产品的件数不超过B种农产品件数的3倍且总价不超过5400元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,设两种农产品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.解:(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,依题意得:2x+3y=690x+4y=720解得:x=120y=150答:每件A种农产品的价格是120元,每件B种农产品的价格是150元.(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,依题意得:m≤3(40−m)120m+150(40−m)≤5400解得:20≤m≤30.设两种农产品全部售出后获得的总利润为w元,则w=(160﹣120)m+(200﹣150)(40﹣m)=﹣10m+2000.∵﹣10<0,∴w随m的增大而减小,∴当m=20时,w取得最大值,此时40﹣m=40﹣20=20.答:当购进20件A种农产品,20件B种农产品时获利最多.总结提升:本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.19.(2022•遂宁)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?思路引领:(1)根据购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元,可以列出相应的二元一次方程组,然后求解即可;(2)根据要求篮球不少于30个,且总费用不超过5500元,可以列出相应的不等式组,从而可以求得篮球数量的取值范围,然后即可写出相应的购买方案.解:(1)设篮球的单价为a元,足球的单价为b元,由题意可得:2a+3b=5103a+5b=810解得a=120b=90答:篮球的单价为120元,足球的单价为90元;(2)设采购篮球x个,则采购足球为(50﹣x)个,∵要求篮球不少于30个,且总费用不超过5500元,∴x≥30120x+90(50−x)≤5500解得30≤x≤3313∵x为整数,∴x的值可为30,31,32,33,∴共有四种购买方案,方案一:采购篮球30个,采购足球20个;方案二:采购篮球31个,采购足球19个;方案三:采购篮球32个,采购足球18个;方案四:采购篮球33个,采购足球17个.总结提升:本题考查二元一次方程组的应用、一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的方程组和不等式组.模块二2023中考押题预测20.(2023•花都区一模)“桃之夭夭,灼灼其华”,每年2﹣3月份,我区某湿地公园内的桃花陆续绽放,引来众多市民前往踏青观赏,纷纷拍照留念,记录生活美好时光.小王抓住这一商机,计划从市场购进A、B两种型号的手机自拍杆进行销售.据调查,购进1件A型号和1件B型号自拍杆共需45元,其中1件B型号自拍杆价格是1件A型号自拍杆价格的2倍.(1)求1件A型号和1件B型号自拍杆的进价各是多少元?(2)若小王计划购进A、B两种型号自拍杆共100件,并将这两款手机自拍杆分别以20元50元的价钱进行售卖.为了保证全部售卖完后的总利润不低于1100元,求最多购进A型号自拍杆多少件?思路引领:(1)设A型号自拍杆的进价是x元,B型号自拍杆的进价是2x元,根据购进1件A型号和1件B型号自拍杆共需45元,其中1件B型号自拍杆价格是1件A型号自拍杆价格的2倍列方程即可得到结论;(2)设购进A型号自拍杆m件,则购进B型号自拍杆(100﹣m)件,根据全部售卖完后的总利润不低于1100元列方程,即可得到结论.解:(1)设A型号自拍杆的进价是x元,B型号自拍杆的进价是2x元,根据题意得,x+2x=45,解得x=15,答:A型号自拍杆的进价是15元,B型号自拍杆的进价是30元;(2)设购进A型号自拍杆m件,则购进B型号自拍杆(100﹣m)件,根据题意得,(20﹣15)m+(50﹣30)(100﹣m)≥1100,解得m≤60,答:最多购进A型号自拍杆60件.总结提升:本题考查了一元一次不等式的应用,一元一次方程的应用,正确地理解题意列出方程和不等式是解题的关键.21.(2023•中原区校级一模)瓦岗红薯是河南省驻马店市确山县瓦岗镇的特产.瓦岗红薯因个头大、外型好、营养丰富、皮薄心红、肉丝细腻、味道香甜、易存放等特点备受人们的青昧.郑州市某超市打算试销A、B两个品种的瓦岗红薯,拟定A品种每箱售价比B品种每箱售价贵25元,且已知销售3箱B品种和2箱A品种的总价为550元.(1)问A品种与B品种每箱的售价各是多少元?(2)若B品种每箱的进价为80元,A品种每箱的进价为100元现水果店打算购进B品种与A品种共21箱,要求所花资金不高于1960元,则该超市应如何设计购进方案才能获得最大利润,最大利润是多少?思路引领:(1)设B品种与A品种每箱的售价分别是x元、y元,根据题意列出方程组即可解决问题.(2)设B品种购进a箱,则A品种购进(21﹣a)箱,利润为w元,根据题意列不等式组即可得到结论.解:(1)设B品种与A品种每箱的售价分别是x元、y元.根据题意,得y=x+25,解得x=100,答:B品种与A品种每箱的售价分别是100元,125元.(2)设B品种购进a箱,则A品种购进(21﹣a)箱.∵要求所花资金不高于1960元,∴80a+100(21﹣a)≤1960,解得a≥7.设利润为w元.根据题意,得w=(100﹣80)a+(125﹣100)(21﹣a)=﹣5a+525,∴w随a的增大而减小,∴当a=7时,w取得最大值,此时w=﹣5×7+525=490,此时21﹣a=14.答:购进B品种7箱,A品种14箱时,利润最大,最大利润是490元.总结提升:本题考查一次函数的应用、二元一次方程组等知识,解题的关键是学会设未知数,列出解方程组解决问题,学会构建一次函数,利用一次函数的性质解决最值问题,属于中考常考题型.22.(2023•南岗区一模)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需156元,购买4本科技类图书和5本文学类图书需284元.(1)每本科技类图书与每本文学类图书的价格分别为多少元?(2)社区计划购进科技类图书和文学类图书共60本,且总费用不超过2000元,那么最多购进科技类图书多少本?思路引领:(1)设每本科技类图书的价格为x元,每本文学类图书的价格为y元,根据“购买2本科技类图书和3本文学类图书需156元,购买4本科技类图书和5本文学类图书需284元”,可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进科技类图书m本,则购进文学类图书(60﹣m)本,利用总价=单价×数量,结合总价不超过2000元,可得出关于m的一元一次不等式,解之取其中的最大值,即可得出结论.解:(1)设每本科技类图书的价格为x元,每本文学类图书的价格为y元,根据题意得:2x+3y=1564x+5y=284解得:x=36y=28答:每本科技类图书的价格为36元,每本文学类图书的价格为28元;(2)设购进科技类图书m本,则购进文学类图书(60﹣m)本,根据题意得:36m+28(60﹣m)≤2000,解得:m≤40,∴m的最大值为40.答:最多购进科技类图书40本.总结提升:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(2023•香坊区一模)文教店用1200元购进了甲、乙两种纪念册,已知甲种纪念册进价为每本12元,乙种纪念册进价为每本10元,文教店在销售时甲种纪念册售价为每本15元,乙种纪念册售价为每本12元,全部售完后共获利270元.(1)求文教店购进甲、乙两种纪念册各多少本?(2)若文教店以原进价再次购进甲、乙两种纪念册,且购进甲种纪念册的数量不变,而购进乙种纪念册的数量是第一次的2倍,乙种纪念册按原售价销售,而甲种纪念册降价销售,当两种纪念册销售完毕时,要使再次购进的纪念册获利不少于340元,求甲种纪念册每本最低售价应为多少元?思路引领:(1)设文教店购进x本甲种纪念册,y本乙种纪念册,利用进货总价=进货单价×进货数量及总利润=每本的销售利润×销售数量(进货数量),可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设甲种纪念册每本售价为m元,利用总利润=每本的销售利润×销售数量(进货数量),可得出关于m的一元一次不等式,解之取其中的最小值,即可得出结论.解:(1)设文教店购进x本甲种纪念册,y本乙种纪念册,根据题意得:12x+10y=1200(15−12)x+(12−10)y=270解得:x=50y=60答:文教店购进50本甲种纪念册,60本乙种纪念册;(2)设甲种纪念册每本售价为m元,根据题意得:50(m﹣12)+(12﹣10)×60×2≥340,解得:m≥14,∴m的最小值为14.答:甲种纪念册每本最低售价应为14元.总结提升:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(2023•莱芜区一模)“五一”劳动节马上来了,为了抓住“五一”小长假旅游商机,某旅游景点决定购进A,B两种纪念品,购进A种纪念品10件,B种纪念品4件,共需1200元;购进A种纪念品5件,B种纪念品8件,共需900元.(1)求购进A,B两种纪念品每件各需多少元?(2)若购买两种纪念品共200件,并且购买B种纪念品的数量不大于A种纪念品数量的3倍.A种纪念品每件获利30元,B种纪念品每件获利是进价的八折,请设计一个方案:怎样购进A,B两种纪念品获利润最大?最大利润是多少?思路引领:(1)设购进A种纪念品每件需x元,B种纪念品每件需y元,根据“购进A种纪念品10件,B种纪念品4件,共需1200元;购进A种纪念品5件,B种纪念品8件,共需900元”,可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进A种纪念品m件,则购进B种纪念品(200﹣m)件,根据购买B种纪念品的数量不大于A种纪念品数量的3倍,可得出关于m的一元一次不等式,解之可得出m的取值范围,设购进的200件纪念品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量(购进数量),可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.解:(1)设购进A种纪念品每件需x元,B种纪念品每件需y元,根据题意得:10x+4y=12005x+8y=900解得:x=100y=50答:购进A种纪念品每件需100元,B种纪念品每件需50元;(2)设购进A种纪念品m件,则购进B种纪念品(200﹣m)件,根据题意得:200﹣m≤3m,解得:m≥50.设购进的200件纪念品全部售出后获得的总利润为w元,则w=30m+50×0.8(200﹣m),即w=﹣10m+8000,∵﹣10<0,∴w随m的增大而减小,又∵m≥50,且m为正整数,∴当m=50时,w取得最大值,最大值=﹣10×50+8000=7500,此时200﹣m=200﹣50=150.∴当购进A种纪念品50件,B种纪念品150件时,获得的总利润最大,最大总利润为7500元.总结提升:本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.25.(2023•城阳区一模)某商店购进甲、乙两种手写笔进行销售,若售出2支甲种手写笔和1支乙种手写笔共收入354元,若售出3支甲种手写笔和2支乙种手写笔共收入600元.(1)求甲、乙两种手写笔每支的售价是多少元?(2)每支甲种手写笔的成本83元,每支乙种手写笔的成本103元.商店购进甲、乙两种手写笔共20支,其中乙种手写笔的数量不超过甲种手写笔数量的3倍,那么当购进甲、乙两种手写笔分别是多少支时,该商店销售完后获得利润最大?最大获利多少元?思路引领:(1)根据售出2支甲种手写笔和1支乙种手写笔共收入354元,售出3支甲种手写笔和2支乙种手写笔共收入600元,可以列出相应的二元一次方程组,然后求解即可;(2)根据题意和(1)中的结果,可以写出利润与购买甲种笔记本数量的函数关系式,再根据乙种手写笔的数量不超过甲种手写笔数量的3倍,可以求得甲种笔记本数量的取值范围,最后根据一次函数的性质,可以求得最大值.解:(1)设甲种手写笔每支的售价为a元,乙种手写笔每支的售价为b元,由题意可得:2a+b=3543a+2b=600解得a=108b=138答:甲种手写笔每支的售价为108元,乙种手写笔每支的售价为138元;(2)设购进甲种手写笔x支,则购进乙种手写笔(20﹣x)支,利润为w元,由题意可得:w=(108﹣83)x+(138﹣103)(20﹣x)=﹣10x+700,∴w随x的增大而减小,∵乙种手写笔的数量不超过甲种手写笔数量的3倍,∴20﹣x≤3x,解得x≥5,∴当x=5时,w取得最大值,此时w=650,20﹣x=15,答:购进甲种手写笔5支,则购进乙种手写笔15支时,该商店销售完后获得利润最大,最大获利是650元.总结提升:本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质求最值.26.(2023•长沙模拟)某超市用1500元购进了甲、乙两种文具,已知甲种文具进价为每个15元,乙种文具进价为每个18元,超市在销售时甲种文具售价为每个20元,乙种文具售价为每个26元,全部售完后共获利600元.(1)求这个超市购进甲、乙两种文具各多少个;(2)若该超市以原价再次购进甲、乙两种文具,且购进甲种文具的数量不变,而购进乙种文具的数量是第一次的2倍,乙种文具按原售价销售,而甲种文具降价销售,当两种文具销售完毕时,要使再次购进的文具获利不少于920元,则甲种文具的最低售价每个应为多少元?思路引领:(1)设这个超市购进甲种文具x个,乙种文具y个,利用进货总价=进货单价×进货数量及总利润=每个的销售利润×销售数量(进货数量),可得出关于x,y的二元一次方程组,解之即可得出这个超市购进甲、乙两种文具的数量;(2)设甲种文具的售价为每个m元,利用总利润=每个的销售利润×销售数量(进货数量),结合总利润不少于920元,可得出关于m的一元一次不等式,解之取其中的最小值,即可得出结论.解:(1)设这个超市购进甲种文具x个,乙种文具y个,根据题意得:15x+18y=1500(20−15)x+(26−18)y=600解得:x=40y=50答:这个超市购进甲种文具40个,乙种文具50个;(2)设甲种文具的售价为每个m元,根据题意得:40(m﹣15)+(26﹣18)×50×2≥920,解得:m≥18,∴m的最小值为18.答:甲种文具的最低售价每个应为18元.总结提升:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.27.(2023•新抚区三模)晨光文具店用进货款2000元购进A品牌的文具盒40个,B品牌的文具盒60个,其中A品牌文具盒的进货单价比B品牌文具盒的进货单价多5元.(1)求A,B两种文具盒的进货单价;(2)已知A品牌文具盒的售价为28元/个,若使这批文具盒全部售完后利润不低于500元,B品牌文具盒的销售单价最少是多少?思路引领:(1)设A品牌文具盒的进货单价是x元,B品牌文具盒的进货单价是y元,根据“晨光文具店用进货款2000元购进A品牌的文具盒40个,B品牌的文具盒60个,其中A品牌文具盒的进货单价比B品牌文具盒的进货单价多5元”,可得出关于x,y的二元一次方程组,解之即可得出A,B两种文具盒的进货单价;(2)设B品牌文具盒的销售单价是m元,利用总利润=每个的销售利润×销售数量(进货数量),结合这批文具盒全部售完后总利润不低于500元,可得出关于m的一元一次不等式,解之取其中的最小值,即可得出结论.解:(1)设A品牌文具盒的进货单价是x元,B品牌文具盒的进货单价是y元,根据题意得:40x+60y=2000x−y=5解得:x=23y=18答:A品牌文具盒的进货单价是23元,B品牌文具盒的进货单价是18元;(2)设B品牌文具盒的销售单价是m元,根据题意得:(28﹣23)×40+60(m﹣18)≥500,解得:m≥23,∴m的最小值为23.答:B品牌文具盒的销售单价最少是23元.总结提升:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.28.(2023•黄浦区二模)小丽与妈妈去商场购物,商场正在进行打折促销,规则如下:优惠活动一:任选两件商品,第二件半价(两件商品价格不同时,低价商品享受折扣);优惠活动二:所有商品打八折.(两种优惠活动不能同享)(1)如果小丽的妈妈看中一件价格600元的衣服和一双500元的鞋子,那么她选择哪个优惠活动会更划算?请通过计算说明;(2)如果小丽的妈妈想将之前看中的鞋子换成一条裤子,当裤子价格(裤子价格低于衣服价格)低于多少元时,小丽会推荐妈妈选择优惠活动二?为什么?思路引领:(1)根据购买衣服及鞋子的原价,结合商场给出的两种促销活动,可分别求出选择两种促销活动需支付的费用,比较后可得出结论;(2)当裤子价格(裤子价格低于衣服价格)低于400元时,小丽会推荐妈妈选择优惠活动二,设裤子的价格为x元,则选择优惠活动一需支付(600+0.5x)元,选择优惠活动二需支付0.8(600+x)元,根据选择优惠活动二更省钱,可得出关于x的一元一次不等式,解之即可得出结论.解:(1)选择优惠活动一需支付费用为600+500×0.5=850(元);选择优惠活动二需支付费用为(600+500)×0.8=880(元).∵850<880,∴她选择优惠活动一会更划算;(2)当裤子价格(裤子价格低于衣服价格)低于400元时,小丽会推荐妈妈选择优惠活动二,理由如下:设裤子的价格为x元,则选择优惠活动一需支付(600+0.5x)元,选择优惠活动二需支付0.8(600+x)元,根据题意得:600+0.5x>0.8(600+x),解得:x<400,∴当裤子价格(裤子价格低于衣服价格)低于400元时,小丽会推荐妈妈选择优惠活动二.总结提升:本题考查了一元一次不等式的应用以及有理数的混合运算,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.29.(2023•驿城区校级二模)某超市计划经销A,B两种新型品牌的农产品共100箱,这两种农产品的进价,售价如下表所示.A品牌B品牌进价(元/箱)80130售价(元/箱)120200(1)若该超市购进这两种新型品牌的农产品共用去10000元,问这两种新型品牌农产品各购进多少箱?(2)在每个品牌农产品销售利润不变的情况下,若该超市销售这批农产品的总利润不少于5600元,则至少需购进B品牌农产品多少箱?思路引领:(1)首先设该商场购进A种新型品牌的农产品x箱,购进B种新型品牌的农产品(100﹣x)箱,然后根据题意,即可得方程,解方程即可求得答案;(2)设至少需购进B种新型品牌的农产品y箱,然后由该商场销售这批新型品牌的农产品的总利润不少于5600元,即可得一元一次不等式(120﹣80)(100﹣y)+(200﹣130)y≥5600,解此不等式即可求得答案;解:(1)设该商场购进A种新型品牌的农产品x箱,购进B种新型品牌的农产品(100﹣x)箱,由题意得:80x+130(100﹣x)=10000,解得:x=60,∴该商场购进A种新型品牌的农产品60箱,购进B种新型品牌的农产品40箱;(2)设购进B种新型品牌的农产品y箱,由题意得:(120﹣80)(100﹣y)+(200﹣130)y≥5600,解得:y≥5313∴至少需购进B种新型品牌的农产品53箱.总结提升:此题考查了一元一次不等式(组),一元一次方程的实际应用问题.此题综合性较强,难度较大,解题的关键是理解题意列方程,不等式.30.(2023•连云港一模)某餐饮公司推出甲、乙两种外卖菜品,已知售出2份甲菜品和1份乙菜品可获利40元,售出3份甲菜品和2份乙菜品可获利65元.(1)求每份甲、乙菜品的利润各是多少元?(2)根据营销情况,该餐饮公司每日都可以销售完甲、乙两种外卖菜品600份,且甲菜品的数量不多于乙菜品的一半,应该如何设计两种菜品的数量才能使获得的利润最高?最高利润是多少?思路引领:(1)设每份菜品甲的利润为x元,每份菜品乙的利润为y元,根据售出2份甲菜品和1份乙菜品可获利40元,售出3份甲菜品和2份乙菜品可获利65元,列二元一次方程组,求解即可;(2)设购进甲菜品m份,总利润为w元,根据甲菜品的数量不多于乙菜品的一半,求出m的取值范围,再表示出w与m的函数关系式,根据一次函数的增减性即可确定最大利润时进货方案,进一步求出最大利润即可.解:(1)设每份菜品A的利润为x元,每份菜品B的利润为y元,根据题意得2x+y=403x+2y=65解得x=15y=10答:每份菜品甲的利润为15元,每份菜品乙的利润为10元;(2)设购进甲菜品m份,总利润为w元,根据题意得m≤12(600﹣解得m≤200,w=15m+10(600﹣m)=5m+6000,∵5>0,∴w随着m的增大而增大,当m=200时,w取得最大值,最大值为7000元,600﹣200=400(份),答:购进甲菜品400份,乙菜品200份,所获利润最大,最大利润为1700元.总结提升:本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,理解题意是解题的关键.31.(2023•浠水县一模)某超市计划同时购进一批甲、乙两种商品,若购进甲商品10件和乙商品8件,共需要资金880元;若购进甲商品2件和乙商品5件,共需要资金380元.(1)求甲、乙两种商品每件的进价各是多少元?(2)该超市计划购进这两种商品共50件,而可用于购买这两种商品的资金不超过2520元.根据市场行情,销售一件甲商品可获利10元,销售一件乙商品可获利15元.该超市希望销售完这两种商品所获利润不少于620元.则该超市有哪几种进货方案?思路引领:(1)设甲商品每件的进价是x元,乙商品每件的进价是y元,根据题意建立二元一次方程组,解方程组即可求解;(2)设购进甲商品a件,则购进乙商品(50﹣a)件,根据题意,建立一元一次不等式组,解不等式组,求得整数解即可求解.解:(1)设甲商品每件的进价是x元,乙商品每件的进价是y元,根据题意得,10x+8y=8802x+5y=380解得:x=40y=60答:甲商品每件的进价是40元,乙商品每件的进价是60元;(2)解:设购进甲商品a件,则购进乙商品(50﹣a)件,根据题意得,40a+60(50−a)≤252010a+15(50−a)≥620解得:24≤a≤26,∵a为正整数,故a=24,25,26,∴有三种进货方案,方案一:购进甲商品24件,乙商品26件;方案二:购进甲商品25件,乙商品25件;方案三:购进甲商品26件,乙商品24件;总结提升:本题考查了二元一次方程组的应用,一元一次不等式组的应用,根据题意列出方程组或不等式组是解题的关键.32.(2023•苏州一模)某文具店计划购进A、B两种笔记本,已知A种笔记本的进价比B种笔记本的进价每本便宜3元现分别购进A种笔记本150本,B种笔记本300本,共计6300元.(1)求A、B两种笔记本的进价;(2)文具店第二次又购进A、B两种笔记本共100本,且投入的资金不超过1380元.在销售过程中,A、B两种笔记本的标价分别为20元/本、25元/本.两种笔记本按标价各卖出m本以后,该店进行促销活动,剩余的A种笔记本按标价的七折销售,剩余的B种笔记本按标价的八折销售.若第二次购进的100本笔记本全部售出后的最大利润不少于600元,请求出m的最小值.思路引领:(1)设A种笔记本的进价是x元,B种笔记本的进价是y元,由题意:A种笔记本的进价比B种笔记本的进价每本便宜3元;现分别购进A种笔记本150本,B种笔记本300本,共计6300元.列出二元一次方程组,解方程组即可;(2)设文具店第二次购进A种笔记本a本,则B种笔记本(100﹣a)本,根据投入的资金不超过1380元可求a的范围;再根据两种笔记本按标价各卖出m本以后,该店进行促销活动,剩余的A种笔记本按标价的七折销售,剩余的B种笔记本按标价的八折销售.若第二次购进的100本笔记本全部售出后的最大利润不少于600元,列出不等式可求出m的最小值.解:(1)设A种笔记本的进价是x元,B种笔记本的进价是y元,由题意得:x+3=y150x+300y=6300解得:x=12y=15答:A种笔记本的进价是12元,B种笔记本的进价是15元;(2)设文具店第二次购进A种笔记本a本,则B种笔记本(100﹣a)本,由题意得:12a+15(100﹣a)≤1380,解得a≥40,依题意有:20m+25m+(a﹣m)×20×0.7+(100﹣a﹣m)×25×0.8﹣12a﹣15(100﹣a)≥600,解得:m≥3a+100∵m为整数,∴m的最小值为20.总结提升:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.33.(2023•福田区模拟)某企业计划购买A、B两种型号的机器人来搬运货物,已知每台A型机器人比每台B型机器人每天少搬运10吨,且A型机器人每天搬运540吨货物与B型机器人每天搬运600吨货物所需台数相同.(1)求每台A型机器人和每台B型机器人每天分别搬运货物多少吨?(2)每台A型机器人售价1.2万元,每台B型机器人售价2万元,该公司计划采购A、B两种型号的机器人共30台,必须满足每天搬运的货物不低于2830吨,购买金额不超过48万元.请你求出最节省的采购方案,购买总金额最低是多少万元?思路引领:(1)设每台A型机器人每天搬运货物x吨,则每台B型机器人每天搬运货物(x+10)吨,根据“A型机器人每天搬运540吨货物与B型机器人每天搬运600吨货物所需台数相同”列方程即可得解;(2)先根据题意列出一元一次不等式组,解不等式组求出m的取值范围,再根据题意列出一次函数解析式,利用次函数的性质,即可求出答案.解:(1)设每台A型机器人每天搬运货物x吨,则每台B型机器人每天搬运货物(x+10)吨,由题意得:540x解得:x=90,当x=90时,x(x+10)≠0,∴x=90是分式方程的根,∴x+10=90+10=100,答:每台A型机器人每天搬运货物90吨,每台B型机器人每天搬运货物100吨;(2)设购买A型机器人m台,购买总金额为w万元,由题意得:90m+100(30−m)≥28301.2m+2(30−m)≤48解得:15≤m≤17,w=1.2m+2(30﹣m)=﹣0.8m+60;∵﹣0.8<0,∴w随m的增大而减小,∴当m=17时,w最小,此时w=﹣0.8×17+60=46.4,∴购买A型机器人17台,B型机器人13台时,购买总金额最低是46.4万元.总结提升:本题考查了分式方程的应用,一元一次不等式组的应用,根据题意找出题目中的相等关系,不等关系列出分式方程,一元一次不等式组及列出一次函数关系式是解决问题的关键.34.(2023•覃塘区一模)某高科技公司根据市场需求,计划生产A、B两种型号的医疗器械,其部分信息如下:信息一:A、B两种型号的医疗器械共生产80台;信息二:生产这两种医疗器械的资金超过1800万元,但不足1810万元;信息三:A、B两种医疗器械的生产成本和售价如下表:型号AB成本(万元/台)2025售价(万元/台)2430根据上述信息,解答下列问题:(1)这两种型号的医疗器械各生产多少台?(2)在实际销售时,每台A型医疗器械的售价提高了m%,每台B型医疗器械的售价不变,全部销售这两种医疗器械共获得利润595万元,求m的值.(利润=售价﹣成本)思路引领:(1)设生产A种型号的医疗器械x台,则生产B种型号的医疗器械(80﹣x)台.构建不等式组解决问题即可;(2)根据共获得利润595万元,构建方程求解.解:设生产A种型号的医疗器械x台,则生产B种型号的医疗器械(80﹣x)台.由题意得,20x+25(80−x)>180020x+25(80−x)<1810解得,38<x<40,∵x为整数,∴x=39,则80﹣39=41.答:生产A种型号的医疗器械39台,则生产B种型号的医疗器械41台;(2)由题意得,39[24(1+m%)﹣20]+41(30﹣25)=595,解得m=25.总结提升:本题考查一元一次不等式组的应用,一元一次方程的应用,解题的关键是理解题意,学会利用参数根据不等式组或方程解决问题.35.(2023•游仙区模拟)2022年3月1日,新冠疫情卷土重来,疫情发生后,市政府高度重视,并第一时间启动应急预案,迅速做好疫情防控工作,由于疫情原因,市急需大量物资.某省红十字会采购甲、乙两种抗疫物资共540吨,甲物资单价为3万元/吨,乙物资单价为2万元/吨,采购两种物资共花费1380万元.(1)甲、乙两种物资各采购了多少吨?(2)现在计划安排A,B两种不同规格的卡车共50辆来运输这批物资,A种卡车每辆需付运输费1500元,B种卡车每辆需付运输费1300元.甲物资7吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B型卡车.按此要求安排A,B两型卡车的数量,请问有几种运输方案?哪种运输方案的运输费最少,并求此时的运输费.思路引领:(1)设甲物资采购了x吨,乙物资采购了y吨,根据“某省红十字会采购甲、乙两种抗疫物资共540吨,且采购两种物资共花费1380万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设安排A型卡车m辆,则安排B型卡车(50﹣m)辆,根据安排的这50辆车一次可运输300吨甲物资及240吨乙物资,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案;再求出三种方案的运费比较即可.解:(1)设甲物资采购了x吨,乙物资采购了y吨,依题意,得:x+y=5403x+2y=1380解得:x=300y=240答:甲物资采购了300吨,乙物资采购了240吨;(2)设安排A型卡车m辆,则安排B型卡车(50﹣m)辆,依题意,得:7m+5(50−m)≥3003m+7(50−m)≥240解得:25≤m≤2712∵m为正整数,∴m可以为25,26,27,∴共有3种运输方案,方案1:安排25辆A型卡车,25辆B型卡车;方案2:安排26辆A型卡车,24辆B型卡车;方案3:安排27辆A型卡车,23辆B型卡车;方案1的运费:25×1500+25×1300=70000(元);方案2的运费:26×1500+24×1300=70200(元);方案3的运费:27×1500+23×1300=70400(元);∴方案1运费的运费最少,此时运费为70000元.总结提升:本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.36.(2023•郸城县一模)党的二十大报告,深刻阐述了推动绿色发展,促进人与自然和谐共生的理念,尊重自然、顺应自然、保护自然,是全面建设社会主义现代化国家的内在要求.为响应党的号召,某市政府欲购进一批风景树绿化荒山,已知购进A种风景树4万棵,B种风景树3万棵,共需要380万元;购进A种风景树8万棵,B种风景树5万棵,共需要700万元.(1)问A,B两种风景树每棵的进价分别是多少元?(2)该市政府计划用不超过5460万元购进A,B两种风景树共100万棵,其中要求A风景树的数量不多于58万棵,则共有几种购买方案?思路引领:(1)设A风景树每棵的进价为x元,B风景树每棵的进价为y元,根据购进A种风景树4万棵,B种风景树3万棵,共需要380万元;购进A种风景树8万棵,B种风景树5万棵,共需要700万元.列出方程组,解方程组即可;(2)设购进A风景树m万棵,B风景树(100﹣m)万棵,根据A风景树的数量不多于58万棵和购买A,B风景树的总费用不超过5460万元列出不等式组,解不等式组求出m的取值范围即可.解:(1)设A风景树每棵的进价为x元,B风景树每棵的进价为y元,根据题意得:4x+3y=3808x+5y=700解得x=50y=60答:A风景树每棵的进价为50元,B风景树每棵的进价为60元;(2)设购进A风景树m万棵,B风景树(100﹣m)万棵,则50m+60(100−m)≤5460m≤58解得54≤m≤58,∵m为整数,∴m为54,55,56,57,58,∴共有5种购买方案.总结提升:本题考查的是一元一次不等式组和二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.37.(2023•高青县一模)五星电器店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲240290电压锅200260(1)一季度,五星店购进这两种电器共40台,用去了9000元,并且全部售完,问五星店在该买卖中购进电饭煲和电压锅各多少台?(2)为了满足市场需求,二季度五星店决定用不超过11000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的56(3)在(2)的条件下,请你通过计算判断,哪种进货方案五星店赚钱最多?思路引领:(1)设购进电饭煲x台,电压锅y台,根据“五

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论