2024-2025学年辽宁省沈阳市高三上册10月月考数学检测试题(含解析)_第1页
2024-2025学年辽宁省沈阳市高三上册10月月考数学检测试题(含解析)_第2页
2024-2025学年辽宁省沈阳市高三上册10月月考数学检测试题(含解析)_第3页
2024-2025学年辽宁省沈阳市高三上册10月月考数学检测试题(含解析)_第4页
2024-2025学年辽宁省沈阳市高三上册10月月考数学检测试题(含解析)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024-2025学年辽宁省沈阳市高三上学期10月月考数学检测试题一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若,则是的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要2.若,则()A. B. C. D.3.已知函数在上单调递增,则的取值范围是()A. B. C. D.4.在中,角,,的对边分别为,,,若为非零实数),则下列结论错误的是()A.当时,是直角三角形 B.当时,是锐角三角形C.当时,是钝角三角形 D.当时,是钝角三角形5.耳机的降噪效果成为衡量一个耳机好坏的标准之一,降噪的工作原理就是通过麦克风采集周围环境的噪音,通过数字化分析,以反向声波进行处理,实现声波间的抵消,使噪音降为0,完成降噪(如图所示),已知噪音的声波曲线是,通过主动降噪芯片生成的反向声波曲线是(其中,,),则().A. B. C.π D.6.已知函数是定义在上的偶函数,且在区间单调递减,若,且满足,则的取值范围是()A. B. C. D.7.已知正数,满足,则下列说法不正确的是()A. B.C D.8.设函数在上至少有两个不同零点,则实数取值范围是()A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。全部选对得6分,选对但不全的得部分分,有选错的得0分。9.下列函数在其定义域上既是奇函数又是增函数的是()A. B.C. D.10.函数,部分图象如图所示,下列说法正确的是()A.函数解析式为B.函数的单调增区间为C.函数的图象关于点对称D.为了得到函数的图象,只需将函数向右平移个单位长度11.已知函数,若有6个不同的零点分别为,且,则下列说法正确的是()A.当时,B.的取值范围为C.当时,取值范围为D.当时,的取值范围为三、填空题:本大题共3小题,每小题5分,共15分.12.已知,则用表示为______.13.已知,则的最小值为______.14.在锐角中,角的对边分别为,的面积为,满足,若,则的最小值为______.四、解答题:本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.为了研究学生的性别和是否喜欢跳绳的关联性,随机调查了某中学的100名学生,整理得到如下列联表:男学生女学生合计喜欢跳绳353570不喜欢跳绳102030合计4555100(1)依据的独立性检验,能否认为学生的性别和是否喜欢跳绳有关联?(2)已知该校学生每分钟的跳绳个数,该校学生经过训练后,跳绳个数都有明显进步.假设经过训练后每人每分钟的跳绳个数都增加10,该校有1000名学生,预估经过训练后该校每分钟的跳绳个数在内的人数(结果精确到整数).附:,其中.0.10.050.012.7063.8416.635若,则,16.已知函数.(1)若在R上单调递减,求a的取值范围;(2)若,判断是否有最大值,若有,求出最大值;若没有,请说明理由.17.已知数列的前n项和为,数列满足,.(1)证明等差数列;(2)是否存在常数a、b,使得对一切正整数n都有成立.若存在,求出a、b的值;若不存在,说明理由.18.在中,设角A,B,C所对的边分别是a,b,c,且满足.(1)求角B;(2)若,求面积的最大值;(3)求的取值范围.19.已知集合是具有下列性质的函数的全体,存在有序实数对,使对定义域内任意实数都成立.(1)判断函数,是否属于集合,并说明理由;(2)若函数(,、为常数)具有反函数,且存在实数对使,求实数、满足的关系式;(3)若定义域为的函数,存在满足条件的实数对和,当时,值域为,求当时函数的值域.2024-2025学年辽宁省沈阳市高三上学期10月月考数学检测试题一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若,则是的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要【正确答案】A【分析】根据指、对数函数单调性解不等式,再根据包含关系分析充分、必要条件.【详解】对于,则,解得;对于,则,解得;因为是的真子集,所以是的充分不必要条件.故选:A.2.若,则()A. B. C. D.【正确答案】C【分析】先由条件得到,化弦为切,代入求出答案.【详解】因为,所以,所以.故选:C3.已知函数在上单调递增,则的取值范围是()A. B. C. D.【正确答案】B【分析】根据在上恒大于0,且单调递增,可求的取值范围.【详解】因为函数在上单调递增,所以在上单调递增,所以.且在恒大于0,所以或.综上可知.故选:B4.在中,角,,的对边分别为,,,若为非零实数),则下列结论错误的是()A.当时,是直角三角形 B.当时,是锐角三角形C.当时,是钝角三角形 D.当时,是钝角三角形【正确答案】D【分析】由正弦定理化简已知可得,利用余弦定理,勾股定理,三角形两边之和大于第三边等知识逐一分析各个选项即可得解.【详解】对于选项,当时,,根据正弦定理不妨设,,,显然是直角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,显然是等腰三角形,,说明为锐角,故是锐角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,可得,说明为钝角,故是钝角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,此时,不等构成三角形,故命题错误.故选:D.5.耳机的降噪效果成为衡量一个耳机好坏的标准之一,降噪的工作原理就是通过麦克风采集周围环境的噪音,通过数字化分析,以反向声波进行处理,实现声波间的抵消,使噪音降为0,完成降噪(如图所示),已知噪音的声波曲线是,通过主动降噪芯片生成的反向声波曲线是(其中,,),则().A. B. C.π D.【正确答案】D【分析】根据题意,结合余弦型函数的性质进行求解即可.【详解】由于抵消噪音,所以振幅没有改变,即,所以,要想抵消噪音,需要主动降噪芯片生成的声波曲线是,即,因为,所以令,即,故选:D.6.已知函数是定义在上的偶函数,且在区间单调递减,若,且满足,则的取值范围是()A. B. C. D.【正确答案】D【分析】根据函数的奇偶性、单调性、对数运算等知识列不等式,由此求得的取值范围.【详解】依题意,是偶函数,且在区间单调递减,由得,所以,所以或,所以或,所以的取值范围是.故选:D7.已知正数,满足,则下列说法不正确的是()A. B.C. D.【正确答案】C【分析】令,则,对于A,直接代入利用对数的运算性质计算判断,对于B,结合对数函数的单调性分析判断,对于C,利用作差法分析判断,对于D,对化简变形,结合幂的运算性质及不等式的性质分析判断.【详解】令,则,对于A,,所以A正确,对于B,因为在上递增,且,所以,即,即,所以,所以B正确,对于C,因为,所以,所以C错误,对于D,,因为,所以,所以,所以,因为,所以,所以,所以,所以,所以D正确,故选:C8.设函数在上至少有两个不同零点,则实数取值范围是()A. B. C. D.【正确答案】A【分析】先令得,并得到,从小到大将的正根写出,因为,所以,从而分情况,得到不等式,求出答案.【详解】令得,因为,所以,令,解得或,从小到大将的正根写出如下:,,,,,……,因为,所以,当,即时,,解得,此时无解,当,即时,,解得,此时无解,当,即时,,解得,故,当,即时,,解得,故,当时,,此时在上至少有两个不同零点,综上,的取值范围是.故选:A方法点睛:在三角函数图象与性质中,对整个图象性质影响最大,因为可改变函数的单调区间,极值个数和零点个数,求解的取值范围是经常考察的内容,综合性较强,除掌握三角函数图象和性质,还要准确发掘题干中的隐含条件,找到切入点,数形结合求出相关性质,如最小正周期,零点个数,极值点个数等,此部分题目还常常和导函数,去绝对值等相结合考查综合能力.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。全部选对得6分,选对但不全的得部分分,有选错的得0分。9.下列函数在其定义域上既是奇函数又是增函数的是()A. B.C. D.【正确答案】BC【分析】根据解析式直接判断奇偶性与单调性即可求解.【详解】选项A:为奇函数不是增函数,选项B:,为奇函数和增函数,选项C:为奇函数和增函数,选项D:不是奇函数.故选:BC.10.函数,部分图象如图所示,下列说法正确的是()A.函数解析式为B.函数的单调增区间为C.函数的图象关于点对称D.为了得到函数的图象,只需将函数向右平移个单位长度【正确答案】AB【分析】由题意求出f(x)的解析式可判断A;利用正弦函数的单调性和对称性可判断BC;由三角函数的平移变换可判断D.【详解】对于A,由图可知,,又因为由,则,两式相减得:,所以①,又因为,所以,结合①,,因为,所以所以,故A正确;对于B,,解得:,故B正确;对于C,令,解得:,函数f(x)的图象关于点对称,所以C不正确;对于D,将函数向右平移个单位得到,故D不正确.故选:AB.11.已知函数,若有6个不同的零点分别为,且,则下列说法正确的是()A.当时,B.的取值范围为C.当时,的取值范围为D.当时,的取值范围为【正确答案】AC【分析】对A选项,对求导,得到其最值即可判断,对B选项,将看成整体解出或,通过图像找到所在位置,依据,假设通过消元解出范围,再通过数形结合求出的范围,两者比较即可,对C,D通过减少变量,将式子化为,然后转化为的范围进行分类讨论即可判断.详解】当时,,此时,令,解得,令,解得,可得在上单调递减,在上单调递增,且,∴当时,,故A正确;作出如图所示图像:由有6个不同的零点,等价于有6个不同的实数根,解得或,∵,∴若,可得,而当时,,可得,而;当时,,可得而,故的范围为的子集,的取值范围不可能为,故B选项错误;该方程有6个根,且,知且,当时,,,联立解得,,故C正确;当时,,,联立解得,.故D错误.故选:AC.关键点睛:本题的关键点是对的理解,将看成一个,解出其值,然后通过图像分析,转化为直线与图像的交点情况,对于C,D选项式子,我们谨记要减少变量,将其转化为一个或两个变量的相关式子,常见的如,有两根,则,如一元二次方程存在实数解,则.三、填空题:本大题共3小题,每小题5分,共15分.12.已知,则用表示______.【正确答案】【分析】根据换底公式及对数运算计算.【详解】.故答案为.13.已知,则的最小值为______.【正确答案】【分析】我们可以通过对已知等式进行变形,将表示成一个关于或的函数,再根据函数的性质求出最小值.【详解】,我们可以将其变形为.可得,即,那么.当时,.设,,则.根据二倍角公式,,则.由辅助角公式(其中),这里,,则,其最小值为.当时,同理可得的最小值也是.故14.在锐角中,角的对边分别为,的面积为,满足,若,则的最小值为______.【正确答案】【分析】由结合余弦定理和面积公式可得,再利用同角三角函数的关系可求得的值,由化简得,由三角函数的性质求出的范围,从而可求出的最小值.【详解】因为,,所以,所以,因为,所以,即,解得或(舍去),因为,所以,在锐角中,有,,则,所以,因为,因为,所以,所以,所以,所以,因为,所以,设(),则,当且仅当,即时取等号,所以的最小值为.故关键点点睛:此题考查利用余弦定理解三角形,考查三角函数恒等变换公式的应用,考查基本不等式的应用,解题的关键是利用余弦定理和三角形的面积公式对化简变形,考查计算能力,属于难题.四、解答题:本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.为了研究学生的性别和是否喜欢跳绳的关联性,随机调查了某中学的100名学生,整理得到如下列联表:男学生女学生合计喜欢跳绳353570不喜欢跳绳102030合计4555100(1)依据的独立性检验,能否认为学生的性别和是否喜欢跳绳有关联?(2)已知该校学生每分钟的跳绳个数,该校学生经过训练后,跳绳个数都有明显进步.假设经过训练后每人每分钟的跳绳个数都增加10,该校有1000名学生,预估经过训练后该校每分钟的跳绳个数在内的人数(结果精确到整数).附:,其中.0.10.050.012.7063.8416.635若,则,.【正确答案】(1)不能(2)人【分析】(1)首先假设,再计算,并和参考数据比较,即可作出判断;(2)转化为训练前的人数估计.由题意得的值,则即,利用正态曲线的对称性与区间的概率参考数据【小问1详解】:学生的性别和是否喜欢运动无关.,所以根据的独立性检验,不能认为学生的性别与是否喜欢跳绳有关.【小问2详解】训练前该校学生每人每分钟的跳绳个数,则,,,即训练前学生每分钟的跳绳个数在,,,,由(人)估计训练前该校每分钟的跳绳个数在内的人数为.即预估经过训练后该校每分钟的跳绳个数在内的人数为.16.已知函数.(1)若在R上单调递减,求a的取值范围;(2)若,判断是否有最大值,若有,求出最大值;若没有,请说明理由.【正确答案】(1)(2)有最大值,最大值为e【分析】(1)求导,得到恒成立,根据根的判别式得到不等式,求出a的取值范围;(2)求导,得到函数单调性,从而求出函数的最大值.【小问1详解】因为,所以,因为在R上单调递减,所以恒成立,所以,,所以a的取值范围是.【小问2详解】当时,,,令,解得,令,解得,所以当时,单调递增,当,时,单调递减,当时,,又时,,所以有最大值,最大值为e.17.已知数列的前n项和为,数列满足,.(1)证明是等差数列;(2)是否存在常数a、b,使得对一切正整数n都有成立.若存在,求出a、b的值;若不存在,说明理由.【正确答案】(1)证明见解析;(2)存在,.【分析】(1)由数列的前n项和为,可求得,,再由等比数列的定义证明即可.(2)根据题意可求得,,代入中得,只需满足以即可,从而求解的值即可.【小问1详解】解:证明:因为数列的前n项和为,所以当时,,当时,,所以,满足,所以数列的通项公式为,,所以,,所以是等差数列;【小问2详解】解:因为,所以,所以数列是以为首项,为公比的等比数列,所以;所以,要使对一切正整数n都有成立.即,即,所以,解得.故存在常数,当时,对一切正整数n都有成立.18.在中,设角A,B,C所对的边分别是a,b,c,且满足.(1)求角B;(2)若,求面积的最大值;(3)求的取值范围.【正确答案】(1)(2)(3)【分析】(1)根据正弦定理,结合辅助角公式进行求解即可;(2)根据三角形面积公式,结合余弦定理以及基本不等式求解即可;(3)利用正弦定理边角互化将原式转化为,然后令,将原式化为:,最后结合二次函数性质求解值域.【小问1详解】因为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论