《新课标》高三数学(人教版)第一轮复习单元讲座 第17讲 算法案例_第1页
《新课标》高三数学(人教版)第一轮复习单元讲座 第17讲 算法案例_第2页
《新课标》高三数学(人教版)第一轮复习单元讲座 第17讲 算法案例_第3页
《新课标》高三数学(人教版)第一轮复习单元讲座 第17讲 算法案例_第4页
《新课标》高三数学(人教版)第一轮复习单元讲座 第17讲 算法案例_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

普通高中课程标准实验教科书—数学[人教版]高三新数学第一轮复习教案(讲座17)—算法案例一.课标要求:通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。二.命题走向算法是高中数学新课程中的新增内容,本讲的重点是几种重要的算法案例思想,复习时重算法的思想轻算法和程序的构造。预测2007年高考队本讲的考察是:以选择题或填空题的形式出现,分值在5分左右,考察的热点是算法实例和传统数学知识的结合题目。三.要点精讲1.求最大公约数(1)短除法求两个正整数的最大公约数的步骤:先用两个数公有的质因数连续去除,一直除到所得的商是两个互质数为止,然后把所有的除数连乘起来。(2)穷举法(也叫枚举法)穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数。(3)辗转相除法辗转相除法求两个数的最大公约数,其算法可以描述如下:①输入两个正整数m和n;②求余数r:计算m除以n,将所得余数存放到变量r中;③更新被除数和余数:m=n,n=r;④判断余数r是否为0。若余数为0,则输出结果;否则转向第②步继续循环执行。如此循环,直到得到结果为止。(4)更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术。在《九章算术》中记载了更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之。步骤:Ⅰ.任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。Ⅱ.以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。2.秦九韶算法秦九韶算法的一般规则:秦九韶算法适用一般的多项式f(x)=anxn+an-1xn-1+….+a1x+a0的求值问题。用秦九韶算法求一般多项式f(x)=anxn+an-1xn-1+….+a1x+a0当x=x0时的函数值,可把n次多项式的求值问题转化成求n个一次多项式的值的问题,即求v0=anv1=anx+an-1v2=v1x+an-2v3=v2x+an-3……..vn=vn-1x+a0观察秦九韶算法的数学模型,计算vk时要用到vk-1的值,若令v0=an。我们可以得到下面的递推公式:v0=anvk=vk-1+an-k(k=1,2,…n)这是一个在秦九韶算法中反复执行的步骤,可以用循环结构来实现。3.排序排序的算法很多,课本主要介绍里两种排序方法:直接插入排序和冒泡排序(1)直接插入排序在日常生活中,经常碰到这样一类排序问题:把新的数据插入到已经排好顺序的数据列中。例如:一组从小到大排好顺序的数据列{1,3,5,7,9,11,13},通常称之为有序列,我们用序号1,2,3,……表示数据的位置,欲把一个新的数据8插入到上述序列中。完成这个工作要考虑两个问题:(1)确定数据“8”在原有序列中应该占有的位置序号。数据“8”所处的位置应满足小于或等于原有序列右边所有的数据,大于其左边位置上所有的数据。(2)将这个位置空出来,将数据“8”插进去。对于一列无序的数据列,例如:{49,38,65,97,76,13,27,49},如何使用这种方法进行排序呢?基本思想很简单,即反复使用上述方法排序,由序列的长度不断增加,一直到完成整个无序列就有序了。首先,{49}是有序列,我们将38插入到有序列{49}中,得到两个数据的有序列:{38,49},然后,将第三个数据65插入到上述序列中,得到有序列:{38,49,65}…………按照这种方法,直到将最后一个数据65插入到上述有序列中,得到{13,27,38,49,49,65,76,97}这样,就完成了整个数据列的排序工作。注意到无序列“插入排序算法”成为了解决这类问题的平台。(2)冒泡法排序所谓冒泡法排序,形象地说,就是将一组数据按照从小到大的顺序排列时,小的数据视为质量轻的,大的数据视为质量沉的。一个小的数据就好比水中的气泡,往上移动,一个较大的数据就好比石头,往下移动。显然最终会沉到水底,最轻的会浮到顶,反复进行,直到数据列排成为有序列。以上过程反映了这种排序方法的基本思路。我们先对一组数据进行分析。设待排序的数据为:{49,38,65,97,76,13,27,49}排序的具体操作步骤如下:1.将第1个数与右边相邻的数38进行比较,因为38<49,49应下沉,即向右移动,所以交换他们的位置,得到新的数据列:{38,49,65,97,76,13,27,49}2.将新数据列中的第2个数49与右边相邻的数65进行比较,因为65>49,所以顺序不变,得到新的数据列:{38,49,65,97,76,13,27,49}3.将新数据列中的第3个数65与右边相邻的数97进行比较,因为97>65,所以顺序不变,得到新的数据列:{38,49,65,97,76,13,27,49}4.将新数据列中的第4个数97与右边相邻的数76进行比较,因为76<97,97应下沉,所以顺序不变,得到新的数据列:{38,49,65,76,97,13,27,49}5.将新数据列中的第5个数97与右边相邻的数13进行比较,因为13<97,97应下沉,所以顺序改变,得到新的数据列:{38,49,65,76,13,97,27,49}6.将新数据列中的第6个数97与右边相邻的数27进行比较,因为27<97,97应下沉,所以顺序改变,得到新的数据列:{38,49,65,76,13,97,27,49}7.将新数据列中的第7个数97与右边相邻的数49进行比较,因为49<97,97应下沉,所以顺序改变,得到新的数据列:{38,49,65,76,13,97,49,27}我们把上述过程称为一趟排序。其基本特征是最大的数据沉到底,即排在最左边位置上的数据是数组中最大的数据。反复执行上面的步骤,就能完成排序工作,排序过程不会超过7趟。这种排序的方法称为冒泡排序。上面的分析具有一般性,如果数据列有n个数据组成,至多经过n-1趟排序,就能完成整个排序过程。4.进位制(1)概念进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。现在最常用的是十进制,通常使用10个阿拉伯数字0—9进行记数。对于任何一个数,我们可以用不同的进位制来表示。比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的。一般地,若k是一个大于一的整数,那么以k为基数的k进制可以表示为:,而表示各种进位制数一般在数字右下脚加注来表示,如111001(2)表示二进制数,34(5)表示5进制数。(2)进位制间的转换关于进位制的转换,教科书上以十进制和二进制之间的转换为例讲解,并推广到十进制和其它进制之间的转换。这样做的原因是,计算机是以二进制的形式进行存储和计算数据的,而一般我们传输给计算机的数据是十进制数据,因此计算机必须先将十进制数转换为二进制数,再处理,显然运算后首次得到的结果为二进制数,同时计算机又把运算结果由二进制数转换成十进制数输出。非十进制数转换为十进制数比较简单,只要计算下面的式子值即可:第一步:从左到右依次取出k进制数各位上的数字,乘以相应的k的幂,k的幂从n开始取值,每次递减1,递减到0,即;第二步:把所得到的乘积加起来,所得的结果就是相应的十进制数。十进制数转换成非十进制数把十进制数转换为二进制数,教科书上提供了“除2取余法”,我们可以类比得到十进制数转换成k进制数的算法“除k取余法”。非十进制之间的转换一个自然的想法是利用十进制作为桥梁。教科书上提供了一个二进制数据与16进制数据之间的互化的方法,也就是先有二进制数转化为十进制数,再由十进制数转化成为16进制数。四.典例解析题型1:求最大公约数例1.(1)用辗转相除法求123和48的最大公约数?(2)用更相减损来求80和36的最大公约数?解析:(1)辗转相除法求最大公约数的过程如下:(建立带余除式)123=2×48+2748=1×27+2127=1×21+621=3×6+36=2×3+0最后6能被3整除,得123和48的最大公约数为3。(2)分析:我们将80作为大数,36作为小数,执行更相减损术来求两数的最大公约数。执行结束的准则是减数和差相等。更相减损术:因为80和36都是偶数,要去公因数2。80÷2=40,36÷2=18;40和18都是偶数,要去公因数2。40÷2=20,18÷2=9下面来求20与9的最大公约数,20-9=1111-9=29-2=77-2=55-2=33-2=12-1=1可得80和36的最大公约数为22×1=4。点评:对比两种方法控制好算法的结束,辗转相除法是到达余数为0,更相减损术是到达减数和差相等。例2.设计一个算法,求出840与1764的最大公因数。解析:我们已经学习过了对自然数的素因数分解的方法,下面的算法就是在此基础上设计的。解题思路如下:首先对两个数进行素因数分解:840=23×3×5×7,1764=22×32×72,其次,确定两个数的公共素因数:2,3,7。接着确定公共素因数的指数:对于公共素因数2,840中为23,1764中为22,应取较少的一个22,同理可得下面的因数为3和7。算法步骤:第一步:将840进行素数分解23×3×5×7;第二步:将1764进行素数分解22×32×72;第三步:确定它们的公共素因数:2,3,7;第四步:确定公共素因数2,3,7的指数分别是:2,1,1;第五步:最大公因数为22×31×71=84。点评:质数是除1以外只能被1和本身整除的正整数,它应该是无限多个,但是目前没有一个规律来确定所有的质数。题型2:秦九韶算法例3.(2005北京,14)已知n次多项式,如果在一种算法中,计算(k=2,3,4,…,n)的值需要k-1次乘法,计算的值共需要9次运算(6次乘法,3次加法),那么计算的值共需要次运算。下面给出一种减少运算次数的算法:(k=0,1,2,…,n-1).利用该算法,计算的值共需要6次运算,计算的值共需要次运算。答案:65;20。点评:秦九韶算法适用一般的多项式f(x)=anxn+an-1xn-1+….+a1x+a0的求值问题。直接法乘法运算的次数最多可到达,加法最多n次。秦九韶算法通过转化把乘法运算的次数减少到最多n次,加法最多n次。例4.已知多项式函数f(x)=2x5-5x4-4x3+3x2-6x+7,求当x=5时的函数的值。解析:把多项式变形为:f(x)=2x5-5x4-4x3+3x2-6x+7=((((2x-5)x-4)x+3)x-6)x+7计算的过程可以列表表示为:多项式x系数2-5-43-67运算运算所得的值10251055402670+变形后x的"系数"25211085342677*5最后的系数2677即为所求的值。算法过程:v0=2v1=2×5-5=5v2=5×5-4=21v3=21×5+3=108v4=108×5-6=534v5=534×5+7=2677点评:如果多项式函数中有缺项的话,要以系数为0的项补齐后再计算。题型三:排序例4.试用两种排序方法将以下8个数:7,1,3,12,8,4,9,10。按照从大到小的顺序进行排序。解析:可以按照直接插入排序和冒泡排序这两种方法的要求,结合图形,分析写出。直接插入法排序:[7]131284910[71]31284910[731]1284910[12731]84910[128731]4910[1287431]910[12987431]10[1210987431]冒泡排序7777777711333333331121212121212121218888888814444444419999999911010101010101010第一趟771212121231288910128791098491088491077791044441033333111111第2趟第3趟第4趟第5趟第6趟点评:直接插入法和冒泡法排序是常见的排序方法,通过该例,我们对比可以发现,直接插入排序比冒泡排序更有效一些,执行的操作步骤更少一些。例6.给出以下四个数:6,-3,0,15,用直接插入法排序将它们按从小到大的顺序排列,用冒泡法将它们按从大到小的顺序排列。分析:不论从大到小的顺序还是按从大到小的顺序,都可按两种方法的步骤进行排序。解析:直接插入排序法:[6]-3015[-36]015[-306]15[-30615]用冒泡排序法排序:6666666151515-3-3000151566600-3151500000151515-3-3-3-3-3-3-3题型4:进位值例7.把十进制数89化为三进制数,并写出程序语句.解析:具体的计算方法如下:89=3×29+229=3×9+29=3×3+03=3×1+01=3×0+1所以:89(10)=1011001(3)。点评:根据三进制数满三进一的原则,可以用3连续去除89及其所的得的商,然后按倒序的先后顺序取出余数组成数据即可。例8.将8进制数314706(8)化为十进制数,并编写出一个实现算法的程序。解析:314706(8)=3×85+1×84+4×83+7×82+0×81+6×80=104902。所以,化为十进制数是104902。点评:利用把k进制数转化为十进制数的一般方法就可以把8进制数314706(8)化为十进制数,然后根据该算法,利用GET函数,应用循环结构可以设计程序。五.思维总结开始输入:m,n开始输入:m,nr=mMODnm=nn=rr=0?输出:开始YN(1)辗转相除法程序框图与程序语句程序:INPUT“m,n=”;m,nDOr=mMODnm=nn=rLOOPUNTILr=0PRINTEND(2)更相减损术更相减损术程序:INPUT“请输入两个不相等的正整数”;a,bi=0WHILEaMOD2=0ANDbMOD2=0a=a/2b=b/2i=i+1WENDDOIFb<aTHENt=aa=bb=tENDIFc=a-ba=bb=cLOOPUNTILa=bPRINTa^iEND对于两个正整数如何选择合适的方法求他们的最大公约数方法适用范围及特点短除法适合两个较小的正整数或两个质因数较少的正整数,简便易操作。穷举法适合计算机操作,但一一验证过于繁琐。辗转相除法适用于两个较大的正整数,以除法为主,辗转相除法计算次数相对较少,特别当两个数字大小差别较大时计算次数较明显。更相减损术适用于两个较大的正整数,更相减损术以减法为主,计算次数上相对于辗转相处法较多。2.我们以这个5次多项式函数为例加以说明,设:f(x)=a5x5+a4x4+a3x3+a2x2+a1x+a0首先,让我们以5次多项式一步步地进行改写:f(x)=(a5x4+a4x3+a3x2+a2x+a1)x+a0=((a5x3+a4x2+a3x+a2)x+a1)x+a0=(((a5x2+a4x+a3)x+a2)x+a1)x+a0=((((a5x+a4)x+a3)x+a2)x+a1)x+a0上面的分层计算。只用了小括号,计算时,首先计算最内层的括号,然后由里向外逐层计算,直到最外层的括号,然后加上常数项即可。开始开始输入a1,a2,a3,a4,a5,x0n=1,v=v5n≤6?v=v×x0+a5-nn=n+1输出v结束3.排序(1)直接插入排序插入排序的思想就是读一个,排一个。将数组的第1个数据放入数组的第1个位置,以后读入的数据与已存入数组的数据进行比较,确定它按从大到小(从小到大)的排列中排在正确的位置。将该位置以及以后的元素向后推移一个位置,将读入的新数填到空出的位置即可。(2)冒泡排序以从大到小为例:依次比较相邻的两个数,把大的放前面,小的放后面。即首先比较第1个数和第2个数,大数放前,小数放后;然后比较完成第2个数和第3个数;......;直到比较完了最后两个数。第一趟排序结束,最小的一定沉到最后。重复上过程,仍从第1个数开始,到最后第2个数......由于在排序过程中总是大数往前,小数往后,相当气泡上升,所以叫冒泡排序。4.进位值我们常见的数字都是十进制数,比如一般的数值计算,但是并不是生活中的每一种数字都是十进制的。比如时间和角度的单位是六十进制,电子计算机的指令用的是二进制,早先的计算机的用的是十六进制的。普通高中课程标准实验教科书—数学[人教版]高三新数学第一轮复习教案(讲座19)—用样本估计总体及线性相关关系一.课标要求:1.用样本估计总体①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会他们各自的特点;②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差;③能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;④在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性;⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异;⑥形成对数据处理过程进行初步评价的意识。2.变量的相关性①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;②经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。二.命题走向“统计”是在初中“统计初步”基础上的深化和扩展,本讲主要会用样本的频率分布估计总体的分布,并会用样本的特征来估计总体的分布。预测2007年高考对本讲的考察是:1.以基本题目(中、低档题)为主,多以选择题、填空题的形式出现,以实际问题为背景,综合考察学生学习基础知识、应用基础知识、解决实际问题的能力;2.热点问题是频率分布直方图和用样本的数字特征估计总体的数字特征。三.要点精讲1.用样本的数字特征估计总体的数字特征(1)众数、中位数在一组数据中出现次数最多的数据叫做这组数据的众数;将一组数据按照从大到小(或从小到大)排列,处在中间位置上的一个数据(或中间两位数据的平均数)叫做这组数据的中位数;(2)平均数与方差如果这n个数据是,那么叫做这n个数据平均数;如果这n个数据是,那么叫做这n个数据方差;同时叫做这n个数据的标准差。2.频率分布直方图、折线图与茎叶图样本中所有数据(或数据组)的频率和样本容量的比,就是该数据的频率。所有数据(或数据组)的频率的分布变化规律叫做频率分布,可以用频率分布直方图、折线图、茎叶图来表示。频率分布直方图:具体做法如下:(1)求极差(即一组数据中最大值与最小值的差);(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图。注:频率分布直方图中小正方形的面积=组距×=频率。折线图:连接频率分布直方图中小长方形上端中点,就得到频率分布折线图。总体密度曲线:当样本容量足够大,分组越多,折线越接近于一条光滑的曲线,此光滑曲线为总体密度曲线。3.线性回归回归分析:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系或回归关系。回归直线方程:设x与y是具有相关关系的两个变量,且相应于n个观测值的n个点大致分布在某一条直线的附近,就可以认为y对x的回归函数的类型为直线型:。其中,。我们称这个方程为y对x的回归直线方程。四.典例解析题型1:数字特征例1.为了检查一批手榴弹的杀伤半径,抽取了其中20颗做试验,得到这20颗手榴弹的杀伤半径,并列表如下:(1)在这个问题中,总体、个体、样本和样本容量各是什么?(2)求出这20颗手榴弹的杀伤半径的众数、中位数和平均数,并估计这批手榴弹的平均杀伤半径.解析:(1)总体是要检查的这批手榴弹的杀伤半径的全体;个体是每一颗手榴弹的杀伤半径;样本是所抽取的20颗手榴弹的杀伤半径;样本容量是20。(2)在20个数据中,10出现了6次,次数最多,所以众数是10(米)。20个数据从小到大排列,第10个和第11个数据是最中间的两个数,分别为9(米)和10(米),所以中位数是(9+10)=9.5(米)。样本平均数(米)所以,估计这批手榴弹的平均杀伤半径约为9.4米。点评:(1)根据总体、个体、样本、样本容量的概念答题.要注意:总体、个体和样本所说的考察对象是一种数量指标,不能说成考察的对象是手榴弹,而应说是手榴弹的杀伤半径。(2)读懂表格的意义,利用概念求众数、中位数,用样本平均数估计这批手榴弹的平均杀伤半径.另外在这里要会简便计算有多个重复数据的样本的平均数。例2.为估计一次性木质筷子的用量,1999年从某县共600家高、中、低档饭店抽取10家作样本,这些饭店每天消耗的一次性筷子盒数分别为:0.63.72.21.52.81.71.22.13.21.0(1)通过对样本的计算,估计该县1999年消耗了多少盒一次性筷子(每年按350个营业日计算);(2)2001年又对该县一次性木质筷子的用量以同样的方式作了抽样调查,调查的结果是10个样本饭店,每个饭店平均每天使用一次性筷子2.42盒.求该县2000年、2001年这两年一次性木质筷子用量平均每年增长的百分率(2001年该县饭店数、全年营业天数均与1999年相同);(3)在(2)的条件下,若生产一套学生桌椅需木材0.07m3,求该县2001年使用一次性筷子的木材可以生产多少套学生桌椅。计算中需用的有关数据为:每盒筷子100双,每双筷子的质量为5g,所用木材的密度为0.5×103kg(4)假如让你统计你所在省一年使用一次性筷子所消耗的木材量,如何利用统计知识去做,简要地用文字表述出来。解析:(1)所以,该县1999年消耗一次性筷子为2×600×350=420000(盒)。(2)设平均每年增长的百分率为X,则2(1+X)2=2.42,解得X1=0.1=10%,X2=-2.1(不合题意,舍去)。所以,平均每年增长的百分率为10%;(3)可以生产学生桌椅套数为(套)。(4)先抽取若干个县(或市、州)作样本,再分别从这些县(或市、州)中抽取若干家饭店作样本,统计一次性筷子的用量.点评:本题是一道统计综合题,涉及的知识点很多,需要灵活运用各种知识分析解决问题.对于第(1)小题,可先求得样本平均数,再利用样本估计总体的思想来求得问题的解.对于第(2)小题,实际是一个增长率问题的应用题,可通过设未知数列方程的方法来解.对于第(3)小题,用到了物理公式m=ρv,体现了各学科知识之间的联系,让学生触类旁通,在解决实际问题时能综合运用多种知识灵活地解决问题.第(4)小题只要能够运用随机抽样方法,能体会到用样本估计总体的统计思想就可解决,在文字表述上要注意简洁、明了、正确。题型2:数字特征的应用例3.(2002年全国高考天津文科卷(15))甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm2)品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8其中产量比较稳定的小麦品种是甲。解析:eq\o\ac(x,¯)甲=eq\o(\s\up5(1),\s\do3(5))(9.8+9.9+10.1+10+10.2)=10.0,eq\o\ac(x,¯)乙=eq\o(\s\up5(1),\s\do3(5))(9.4+10.3+10.8+9.7+9.8)=10.0;seq\o(\s\up5(2),\s\do3(甲))=eq\o(\s\up5(1),\s\do3(5))(9.82+…+10.22)–102=0.02,seq\o(\s\up5(2),\s\do3(甲))=eq\o(\s\up5(1),\s\do3(5))(9.42+…+9.82)–102=0.244>0.02。点评:方差与平均数在反映样本的特征上一定要区分开。例4.(2005江苏7)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.48.49.49.99.69.49.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A)9.4,0.484(B)9.4,0.016(C)9.5,0.04(D)9.5,0.016答案:D;解析:7个数据中去掉一个最高分和一个最低分后,余下的5个数为:9.4,9.4,9.6,9.4,9.5。则平均数为:,即。方差为:即,故选D。点评:一定要根据实际的题意解决问题,并还原实际情景。题型3:频率分布直方图与条形图例5.为检测,某种产品的质量,抽取了一个容量为30的样本,检测结果为一级品5件,而极品8件,三级品13件,次品14件.(1)列出样本频率分布表;(2)画出表示样本频率分布的条形图;(3)根据上述结果,估计辞呈商品为二极品或三极品的概率约是多少解析:(1)样本的频率分布表为产品频数频率一级晶50.17二级晶80.27三级晶130.43次品40.13(3)此种产品为二极品或三极品的概率约为0.27+0.43=0.7。点评:条形图中纵坐标一般是频数或频率。例6.(2006重庆理,6)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg),得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是(A)20(B)30(C)40(D)50答案:C;解析:根据运算的算式:体重在〔56.5,64.5〕学生的累积频率为2×0.03+2×0.05+2×0.05+2×0.07=0.4,则体重在〔56.5,64.5〕学生的人数为0.4×100=40。点评:熟悉频率、频数、组距间的关系式。例7.某中学对高三年级进行身高统计,测量随机抽取的40名学生的身高,其结果如下(单位:cm)分组[140,145)[145,150)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)合计人数12591363140(1)列出频率分布表;(2)画出频率分布直方图;(3)估计数据落在[150,170]范围内的概率。解析:(1)根据题意可列出频率分布表:分值频数频率[140,145]10.025[145,150]20.050[150,155]50.125[155,160]90.225[160,165]130.325[165,170]60.15[170,175]30.075[175,180]10.025合计401.00(2)频率分布直方图如下:(3)数据落在[150,170]范围内的概率约为0.825。题型4:茎叶图例8.观看下面两名选手全垒打数据的茎叶图,对他们的表现进行比较。1961年扬基队外垒手马利斯打破了鲁斯的一个赛季打出60个全垒打的记录。下面是扬基队的历年比赛中的鲁斯和马利斯每年击出的全垒打的比较图:鲁斯马利斯0813465223685433997661149445061解析:鲁斯的成绩相对集中,稳定在46左右;马利斯成绩相对发散,成绩稳定在26左右。题型5:线性回归方程例9.由施肥量x与水稻产量y试验数据的关系,画出散点图,并指明相关性。解析:散点图为:通过图象可知是正相关。例10.在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s)5101520304050607090120深度y(m)610101316171923252946(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。略解:(1)散点图略,呈直线形。(2)经计算可得=46.36,=19.45,=36750,=5442,=13910。B==0.3.A=-b=19.45-035.542。故所求的回归直线方程为=0.3t+5.542。题型6:创新题例11.把容量为100的某个样本数据分为10组,并填写频率分布表,若前七组的累积频率为0.79,而剩下三组的频数成公比大于2的整数等比数列,则剩下三组中频数最高的一组的频数为___________.答案:16点评:已知前七组的累积频率为0.79,而要研究后三组的问题,因此应先求出后三组的频率之和为1-0.79=0.21,进而求出后三组的共有频数,或者先求前七组共有频数后,再计算后三组的共有频数。由已知知前七组的累积频数为0.79×1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论