![2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-TII_第1页](http://file4.renrendoc.com/view11/M02/2F/12/wKhkGWejPoGAV9GTAAD6sN88jJg830.jpg)
![2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-TII_第2页](http://file4.renrendoc.com/view11/M02/2F/12/wKhkGWejPoGAV9GTAAD6sN88jJg8302.jpg)
![2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-TII_第3页](http://file4.renrendoc.com/view11/M02/2F/12/wKhkGWejPoGAV9GTAAD6sN88jJg8303.jpg)
![2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-TII_第4页](http://file4.renrendoc.com/view11/M02/2F/12/wKhkGWejPoGAV9GTAAD6sN88jJg8304.jpg)
![2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-TII_第5页](http://file4.renrendoc.com/view11/M02/2F/12/wKhkGWejPoGAV9GTAAD6sN88jJg8305.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
nsttut
EnhancingSecurity,Resilience,andSafetyofAutonomousSystemswithGenerativeAI
tii.ae
TableofContents
Sidebar:GenAImodels
4
GenAIUseCases
9
IndividualApplications
9
Self-Awareness
10
Anomalydetection
11
Autonomy
12
Adaptability
12
Predictivemaintenance
13
Faultmanagement
14
Fleet
16
Swarmintelligence
17
Swarmcoordination
19
Communicationresilience
21
Consensus
22
Human
23
Missionplanningandexecution
24
Human-machineteaming
25
Meta-learning
26
Datalabelingandsynthesis
27
Cybersecurity
28
Malwaredetection
29
Intrusiondetection:
31
Integratingthreatintelligence33
Policymanagement33
ThreatSimulation:34
Softwaresupplychainvisibility34
Challenges34
Cost35
Compute36
Adaptation36
Ethical/Regulatory36
Alignment36
Privacy36
Accuracy37
Size37
Newsecurityissues38
Conclusion38
Glossary41
sttut
Rapidadvancesinautonomoussystemsandedgeroboticshaveunlockedunprecedentedopportunitiesinindustriesfrommanufacturingandtransportationtohealthcareandexploration.Increasingcomplexityandconnectivityhavealsointroducednewchallengesinensuringsecurity,resilience,andsafety.Asedgerobotsintegrateintoourdailylivesandcriticalinfrastructures,itisimperativethatwedevelopinnovativeapproachesthatcanraisethesesystems’trustworthinessandreliabilitytonewlevels.
ThiswhitepaperexploresthetransformativepotentialofgenerativeAI(GenAI)toenhancethesecurity,resilience,andsafetyofautonomoussystemsandedgerobots.Wecanusethesecutting-edgetechnologiestomeettheuniquedistributedanddynamicchallengesofedgerobotics,tounlocknewlevelsofintelligence,adaptability,androbustness.
GenAImodelsproducenewcontentbyanalyzingpatternsinadataset.Theyderivecharacteristicprobabilitydistributionsandapplythesetocreatenewdatapatternsthatareconsistentwiththeoriginal“real”dataset.
EarliergenerationsofdiscriminativeAImodelsappliedconditionalprobabilitiestopredictoutcomesforpreviouslyunseendata.Theapproachisversatileandwell-suitedtoawiderangeofproblems,includingclassificationsandregressions.Theyexcelatdelineatingthedecisionboundariesthatdifferentiatebetweenvariousclassesorcategorieswithinthedataset.
Thegrowingranksofgenerativetechniquesincludethosebasedontransformersandtheresultinglargelanguagemodels(LLMs),GenerativeAdversarialNetworks(GANs),VariationalAutoencoders(VAEs),GenerativeFlowModels(GFM),andGenerativeDiffusionModels(GDM).ThesehaveallopenedexcitingnewavenuesofAIresearch—withapplicationstodroneswarmsandintrusiondetection,physicalcommunicationsecurity,semanticcommunication,andmobilenetworks
.1
TheTechnologyInnovationInstitute’sSecureSystemsResearchCenter(TII-SSRC,AbuDhabi,UAE,
https://www.tii.ae/secure-systems)
isworkingtoapplyGenAItoitsworkextendingZeroTrustarchitectures(developedforinformationsecurity)toeveryaspectofinformationsecurityincyber-physicalsystems.
Thus,SSRCconsidershowGenAIcanhelpguaranteesecurity,resilience,andsafetyfordrones,swarms,swarmsofswarms,autonomousterrestrialandmarinevehicles,commandsystems,andhuman/droneinteractions—andparticularlyinareaswhereGenAIoutperformstraditionalAI/MLapproaches.
Examplesinclude:
•Individualapplications:healthmonitoring,stateestimation,predictivemaintenance,anomalydetection,self-healing,navigation,andemergencylandings.
•Fleetapplications:Swarmcoordination,swarmintelligence,collectivedecision-making.
•Human/Droneinteractions:communicationresilience,missionplanning,human-computerinteraction.
•Cybersecurityandresilience:Intrusiondetection,malwareclassification,threatsimulation.
ThispaperwillfocusondronesbecauseSSRCisdoingsomuchworkinthisarea.Whatwelearnfromdronescanbeappliedmuchmoretoautonomousandcyber-physicalsystemsingeneral,includingcars,robots,embeddedsystems,andsmartcities.Bythesametoken,
lessonslearnedintheseareascanbefoldedintoSSRC’sresearch.
approachallowsorganizationstomoveawayfromphysicaldevicemanagementapproachesthatrequireemployeestocarrymultiplephones.
1M.Xuetal.,“UnleashingthePowerofEdge-CloudGenerativeAIinMobileNetworks:ASurveyofAIGCServices.”arXiv,Oct.31,2023.
doi:10.48550/arXiv.2303.16129
Sidebar:GenAImodels
AsurveyofspecificgenerativeAImodelingtechniques,withtheirstrengthsandlimitationsasappliedtodronesafety,security,andresilience.
PopularexcitementovergenerativeAImodelshasbeendrivenbyhighlypublicizednewserviceslikeChatGPT,whichcreateauthoritative-soundingresponsestotextpromptsusingspeciallytrainedLLMs.
LargeLanguageModelsareAIsystemstrainedonvasttextdatasets.TheyuseDeepLearningtechniques,particularlyastructureknownasaTransformer,to“understand”andgeneratehuman-liketextbasedonthepatternsthey'velearned.LLMsanalyzetherelationshipsandcontextsinthetrainingdata.Theyuseavarietyoftechniquestobuildsimplifiedrepresentationsofthedata,allowingthemtomakeassociationsandcorrelationsbetweentheoriginaldataelements.Thesemodelsletthemcomposeresponsesthatcanmimichumanwritingstylesandcoverdiversetopics.VisualAIs,likeDALL-EandStableDiffusion,compilenewimagesfromtextandimageprompts.
LLMsarewidelyused,andwidelyuseful,increatingcontent,code,translations,summaries,syntheticdata,andtostructureunstructureddatafromtexts,documents,images,audio,andotherpromptdata.
Transformermodelsandtheservicesbuiltonthem—likeOpenAI’sChatGPT,Google’sGemini,andAnthropic’sClaude—haveattractedwidespreadattention,thankstotheirimpressiveabilitytocreatearticulate-seemingresponsestohumanprompts.These,andotherdomain-specificLLMsandSmallLanguageModels(SMLs),alsoshowpromiseforsupportinganalysis,research,anddevelopmenttoimprovedronesafety,securityandresilience.
ParallelingtheseveryvisibleAIdevelopments,however,hasbeenalmostadecadeofprogressonnewclassesofGenerativeAImodelscouldautomateandacceleraterepresentation-building.Whilegenerativeapplicationsattractthemostattentions,thesenewmodelsalsoaredrivingadvancesinanalyzingdataandinteractingwiththeworldaroundus.OthergenerativeAImodels—GenerativeAdversarialNetworks,VariationalAutoencoders,GenerativeDiffusionModels,andNormalizingFlowModels—thoughrelativelyunknown,canmakesubstantialcontributionstodronesecurity,safety,andresilience.
TransformerModels:Introducedin2017totranslatebetweenEnglishandFrenchtexts,TransformerModelsexcelatcapturinglong-rangedependenciesandcorrelationswithinunstructureddata
.2
Transformersleverageanovel“attentionmechanism”tolearntheconnectionsbetweenwordstohelpcreateembeddingsautomatically.Priortechniquesrequiredtranslatingrawtextintoavectorrepresentationusingaseparatemodel.Transformerscanbuildcomplexrepresentationsandlearnintricateconnectionsthroughtheirlayeredarchitecture,manner.,allowingresearcherstoprocesslargebodiesofunlabeledtextanddeveloplargelanguagemodelswithbillionsofparameters.Subsequentinnovationshavesupporteddocumentsummarization,composingquestion/answerassociationsacrosslargedatasets,codegeneration,in-depthanalysis,intrusiondetection,malwaredetection,andtranslatingcontrolsysteminstructionsacrossroboticarms.Theapproach’skeyadvantageisdistillingcontextfromcomplexdatasets.Challengesincludehallucination,longertrainingtime,slowerinference-building,heaviercomputationrequirements,andlargermodelsizescomparedtoothertechniques.
2A.Vaswanietal.,“AttentionIsAllYouNeed.”arXiv,Aug.01,2023.
doi:10.48550/arXiv.1706.03762.
GenerativeAdversarialNetworks(GANs):Theseweredevelopedin2014tocreaterealisticsyntheticnumbers,faces,andanimalimages
.3
GANspittwoneuralnetworksagainsteachother:oneisrewardedforgeneratingmorerealisticcontent,andthesecondisrewardedfordetectingfakecontent.Inthiscompetition,thegeneratorimprovesitsabilitytocreaterealisticoutputsthatcanfoolthediscriminator.GANsarewidelyusedincontentgeneration.Sincethefirstversionsweredesignedtoworkwithimages,researchersarenowfindingcreativewaystotranslatedata,suchascodeornetworklogs,intoimagessuitableforGANprocessing.GANsaregoodforrealisticsyntheticdatasetsthatcanbeusedtoimproveautonomoussystemsandcybersecurityalgorithms.They,too,however,sufferfromfailureslikemodecollapseorcatastrophicforgetting.
3I.J.Goodfellowetal.,“GenerativeAdversarialNetworks.”arXiv,Jun.10,2014.doi:10.48550/arXiv.1406.2661.
VariationalAutoencoder(VAE):VAEswereintroducedin2014toimproveinferencesdrawnfromacontinuouslyvaryingdatastream
.4
Thetechniquehelpsfindefficientwaystorepresentdataandcanbeusedtocompressdataordetectanomaliesandthreats.TrainingVAEsprocessinvolvesteachingasetofencodersanddecoderstotranslaterawdataintoanintermediatelatentspacewithadifferentprobabilitydistribution.VAEscanbeusedindependentlyinapplicationslikeanomalydetection,designingbetterencodingschemes,dataaugmentation,andimagegeneration.Inaddition,theyareoftenusedtopre-structuredataforotheralgorithms,includingGANs,toimprovetheirresults.
GenerativeDiffusionModel(GDF):GDFsemergedin2015toimprovelearning,sampling,inferences,andevaluationsthatwereinformedbynon-equilibriumthermodynamicsmodeling
.5
Thetechniqueaddsnoisetoasample(suchasanimage)andthenautomatesthedenoisingprocesstorevealthedata’sunderlyingstructure.Slightvariationscanleadtovalidnewtrainingdatasets.GDFsarewidelyusedinimagegenerationandcanimprovesignalclassificationinvariousdroneusecases.However,thetechniquerequireshighersamplingtimesanddemandsamorecomplexarchitecturethanGANsandVAEs.
NormalizingFlowModels(NFMs):Thesewereintroducedbyresearcherstomakecomplexdatasimplertoworkwith
.6
Thesemodelstakeeasy-to-understanddistributions,likeanormalbellcurve,andtransformthemstepbystep.Eachstepisreversible,meaningwecanalwaysgobacktothestartifneeded.Thisprocess,calleda“flow,”movesfromasimplebeginningtoanendthat
4D.P.KingmaandM.Welling,“Auto-EncodingVariationalBayes.”arXiv,Dec.10,2022.doi:10.48550/arXiv.1312.6114.
5Yang,Ling,etal."Diffusionmodels:Acomprehensivesurveyofmethodsandapplications."ACMComputingSurveys56.4(2023):1-39.
/doi/10.1145/3626235
6Kobyzev,Ivan,SimonJDPrince,andMarcusA.Brubaker."Normalizingflows:Anintroductionandreviewofcurrentmethods."IEEEtransactionsonpatternanalysisandmachineintelligence43.11(2020):3964-3979.
/abstract/document/9089305/authors
resemblesthecomplicatedtargetdataset.Bydoingthis,itispossibletostudyandusethedatamoreeffectively.NFMshavebeenusedtogeneratehandwrittennumbers,images,etc.Newerusecasesincludeenhancedclassificationandencodingschemes.Thetrainingprocesscreatesamodelthattransformstheprobabilitydistributionofadatasetintoamorecomplex,fullyreversibledistribution.NFMscan,however,requirehighercomputationandtrainingtimesthantechniqueslikeGANsandVAEs.
ThefollowingfiguresummarizesthemainGenAITechniquesandtheirapplicationsinthefieldofZeroTrustforautonomoussystems.
GenAIUseCases
Theproliferationofdrone-technologyhasbroughtchallengesthatspancrossbetweendomains—individual,fleet,humancontrol,andcybersecurity.Theirgrowthandcomplexitydemandconstantinnovationtoredoubletheirtrustworthinessandreliability.
Thefollowingapplications—whetherderivedfromUnmannedAerialVehicle(UAV)anddroneresearchorimportedfromotherdomains—haveimportantimplicationsforthefutureofUAVsandotherautonomoussystems.Note,too,thatmanyoftheseareearly-stageprojects,includedtogiveaflavorwhatGenAItoolsmightaccomplishastechniquesevolve.
GenAIshowstremendouspotentialforimprovingZeroTrustframeworkstoenhancesecurity,resilience,andsafetyinindividualautonomoussystems,suchasdrones,self-drivingcars,
robots,andembeddedsystems.Usecasesunderinvestigationincludeboostingself-
awareness,anomalydetection,autonomousdriving,predictivemaintenance,faultmanagement,self-healing,andlandingsafely.
Self-Awareness
Opportunity:Efficientlytranslatenoisy,blurry,andinconsistentdatatounderstandthedrone'scurrentstate—e.g.,compensatingformotionblurwhiletryingtodetectobstacles.
Thefoundationofdronehealthisaccuratelycapturingandmakingsenseofitscurrentstate—includingtheconditionofitscurrenthardware,itsapplications,itsphysicallocation,anditssecurityposture.Intherealworld,thiscangetmessy,asvideofeedssuffermotionblur,GPSdatajitters,inertialguidancedatalosecalibration,andnoiseorgapsdegradeinternalmonitoringdata.
Stateestimationiscrucialtoautonomousnavigationanddecision-making,andrawdatastreamsmustbeaccuratelycorrelatedwithposition,velocity,andorientation
.7
GenerativeAIcanhelpfillinmissingdataandfusedatafrommultiplesourcestoimprovestateestimation
.8
InnovationsinGenAIalgorithmslikeGANs,VAEs,andtraditionalMLalgorithmslikeLSTMcanfillinthesegaps,preservingvehiclesafetyviafaultdetection,predictivemaintenance,faultmanagementandsafe-landingprotocols.Forexample,innovativeGANapproachescanfillinmissingdataandmakeiteasiertofusedatastreamstocreateamoreaccuratestateassessment
,9
helpcorrelateinternallogdatawithacousticanalysis
,10
andidentifypotentialmechanicalissues
.11
Researchershavealsodevelopedtechniquesforgeneratingestimated-statevariablesusingConditionalGANs(CGANs)forindividualdronesanddroneswarms
.12
7T.D.Barfoot,Stateestimationforrobotics.CambridgeUniversityPress,2017.
8Liu,Guangyuan,NguyenVanHuynh,HongyangDu,DinhThaiHoang,DusitNiyato,KunZhu,JiawenKang,ZehuiXiong,AbbasJamalipour,andDongInKim.“GenerativeAIforUnmannedVehicleSwarms:Challenges,ApplicationsandOpportunities.”arXiv,February28,2024.
/10.48550/arXiv.2402.18062.
9Y.He,S.Chai,andZ.Xu,"Anovelapproachforstateestimationusinggenerativeadversarialnetwork,"in2019IEEEInternationalConferenceonSystems,ManandCybernetics(SMC),2019,pp.2248-2253.
/document/8914585
10Y.Wang,A.Vinogradov,“ImprovingtheperformanceofconvolutionalGANusinghistory-stateensembleforunsupervisedearlyfaultdetectionwithacousticemissionsignalsAppl.Sci.,13(5)(2023),p.3136,doi:10.3390/APP13053136
11S.Zheng,A.Farahat,andC.Gupta,“GenerativeAdversarialNetworksforFailurePrediction.”arXiv,Oct.04,2019.Accessed:Mar.15,2024.[Online].Available:
/abs/
1910.02034
12.A.He,C.Luo,X.Tian,andW.Zeng,"AtwofoldSiamesenetworkforreal-timeobjecttracking,"inProceedingsoftheIEEEconferenceoncomputervisionandpatternrecognition,2018,pp.4834-4843.
/document/8578606
Anomalydetection
Opportunity:Improveanalysisofdronesensordatatoidentifyabnormalconditions.
Moreaccurate,multi-dimensionalsystem-staterecordscanalsohelpidentifyanomaliesrelevanttodronehealth.Forexample,VAEscanimprovefaultdetectionandisolation.Theycanalsoidentifythewarningsignsofstressinvarioussystems,toprioritizepredictivemaintenanceschedules.Typically,machine-learningclassificationalgorithmsaretrainedonmultipleclasses(suchasdatatagged“faulty”and“notfaulty”).Dataonrarerclasses,suchas“faulty”data,isoftenscarceinpublicdatasetsandtherealworld.Inthesecases,GenerativeAdversarialNetworks(GANs)canbevaluableinsynthesizingtheserareclasses—makingup“faulty”datathatlooks
conditions.Inaddition,researchersareexploringhowLLMscouldhelpbettercontextualizetooperateinnewenvironments
.13
Forexample,DriveLLMcombinesLLMwithtraditionalautonomousnavigationalgorithmstosupportbetterreasoninganddecision-makingwhenrespondingtoedgecases
.14
Researchersfoundthemethodcouldimproveproactivedecision-makinginunexpectedcircumstances.Anotherapplication,TypeFly,enhancescommunicationbetweenhumansanddronesthroughanaturallanguageinterfac
e15.
Suchlargelanguagemodelsmay,however,manifestsurfacebias,inaccuracies,and
hallucinationissuesthatrequireadditionalsafeguards.Similarly,MicrosoftResearchdiscussestheiradvancementsinintegratingChatGPTwithroboticstomakerobotcontrolmoreintuitive
throughnaturallanguage.They'veenabledChatGPTtounderstandandexecutetasksin
physicalenvironments,whichfacilitateseasierhuman-robotinteractionwithouttheneedfor
complexprogrammingknowledge.TheChatGPTteamhasdevelopeddesignprinciplesfor
languagemodelstosolveroboticstasks(involvingspecialpromptingstructuresandhigh-levelAPIs),andtheyhavedemonstratedhowChatGPTcanhandletaskslikeoperatingdronesandrobotarmsthroughuser-friendlycommandsandfeedback.Thedevelopersemphasizethe
importanceofsafetyandsimulationtestingbeforereal-worldapplication
.16
Adaptability
Opportunity:Improvetranslationofautonomoussystemssoftwaretorunacrossdifferenthardwaremakes,models,andconfigurations.
Autonomoussystemcontrollersmustbetrainedforaspecificmodelandconfiguration.Thiscancreatechallengeswhenupgradingindividualcomponentsoradoptingnewmodels.RTXisarobotcontrolLLMthatcantranslatecontrolpoliciestomanagedifferentroboticarmswithoutrefactoringthecontrolalgorithmsforthelatesthardware.Insometests,leveragingtheexperienceofothercontrollers,producedcontrolpoliciestheoutperformedthebestcontrolscustom-builtforanindividualarm
.17
13Wang,Lei,etal."Asurveyonlargelanguagemodelbasedautonomousagents."FrontiersofComputerScience18.6(2024):1-26.
/article/10.1007/s11704-024-40231-1
14Y.Cuietal.,“DriveLLM:ChartingthePathTowardFullAutonomousDrivingWithLargeLanguageModels,”IEEETransactionsonIntelligentVehicles,vol.9,no.1,pp.1450–1464,Jan.2024,doi:10.1109/TIV.2023.3327715.
15Chen,Guojun,XiaojingYu,andLinZhong."TypeFly:FlyingDroneswithLargeLanguageModel."arXivpreprintarXiv:2312.14950(2023).
/pdf/2312.14950
16Vemprala,Sai,etal."Chatgptforrobotics:Designprinciplesandmodelabilities."arXivpreprintarXiv:2306.17582(2023).
/abs/2306.17582
17O.X.-E.Collaborationetal.,“OpenX-Embodiment:RoboticLearningDatasetsandRT-XModels.”arXiv,Dec.17,2023.doi:10.48550/arXiv.2310.08864.
EarlyLLMs,likeGPT3.5,weretrainedonlargebodiesoftextscrapedfromtheInternet.Thesemodelslackedreal-worldexperiencethatcouldreflecthowvariousconfigurationsofrobotsandotherautonomoussystemsmakeandexecutedecisions.Researchintoroboticaffordancesexploreshowtoconstraineachrobotmodeltoactionsthatarefeasibleandappropriatefortheircapabilities
.18
ThisprovidesaframeworkforguidingLLMdevelopmentbasedonmorecompleteknowledgeofanoperationorprocedure.Atthesametime,thegroundingfunctiontranslatesthishigh-levelknowledgeintoexecutionbyaparticularrobotmodelinaspecifictargetenvironment.
Predictivemaintenance
Opportunity:Predictthependingbreakdownofdronecomponentstooptimizemaintenance,repair,andpart-replacementschedules.
Properlyrecordedandanalyzed,thedrone’ssensorandoperationaldatarevealimpendingmechanicalproblemsbeforebreakdownsoccur.Predictivealgorithmsletmaintenanceandrepaircrewsestablishregularschedules,prioritizemaintenance,andstayaheadofpartsinventories.Withadvancenoticeandplanning,evenmajorrepairsandreplacementscanbeperformedduringroutineservice.Theprobabilitiesofcostlybreakdownsand,worse,catastrophicfailuresdropsharply.Partscanbereplacedjust-before-needed,withservicelifecalculatedasafunctionofinstalled-partquality,servicetime,andoperationalprofile—slashingthecostsofreplacingperfectlysoundpartsonafixedschedule.
TraditionalMLalgorithmsoftenlieattheheartofpredictivemaintenance.Forexample,metricslikeRemainingUsefulLife(RUL)andHealthIndicatorscanidentifymotoranomalies.ButsyntheticdatageneratedbyGANsandotherGenAIalgorithmscanimprovethealgorithms’performance.
MultipleMLtechniques,includingGenAIalgorithms,canbecombinedtoimprovefaultdiagnosisandpredictivemaintenanceworkflows
.19
Forexample,GANtechniqueshavebeenappliedtoacousticsignalsfrommachinerytoidentifyandpredictfaultsnotidentifiedbyothermethods
.20
GANshavealsobeenusedtogeneratesyntheticmonitoring-datasetstohelptrainotherMLalgorithmstoimprovefailure-predictionandoptimizemaintenanceschedules
.21
GAN-FP,geneticadversarialnetworksforfailureprediction,specializeingenerating,balancing,andlabelingtrainingdatatoimproveperformanceofotherMLalgorithm
s22.
Faultmanagement
Opportunity:Identifyfaults,makedynamicadjustments,andeffectasafelandingwhenrequired.
18M.Ahnetal.,“DoAsICan,NotAsISay:GroundingLanguageinRoboticAffordances.”arXiv,Aug.16,2022.Accessed:Mar.21,2024.[Online].Available:
/abs/2204.01691
19Z.Mianetal.,“Aliteraturereviewoffaultdiagnosisbasedonensemblelearning,”EngineeringApplicationsofArtificialIntelligence,vol.127,p.107357,Jan.2024,doi:10.1016/j.engappai.2023.107357.
20Y.Wang,A.VinogradovImprovingtheperformanceofconvolutionalGANusinghistory-stateensembleforunsupervisedearlyfaultdetectionwithacousticemissionsignalsAppl.Sci.,13(5)(2023),p.3136,10.3390/APP13053136
21Q.Fu,H.Wang,J.Zhao,andX.Yan,“AMaintenance-predictionMethodforAircraftEnginesusingGenerativeAdversarialNetworks,”in2019IEEE5thInternationalConferenceonComputerandCommunications(ICCC),Dec.2019,pp.225–229.doi:10.1109/ICCC47050.2019.9064184.
22S.Zheng,A.Farahat,andC.Gupta,“GenerativeAdversarialNetworksforFailurePrediction.”arXiv,Oct.04,2019.Accessed:Mar.15,2024.[Online].Available:
/abs/1910.02034
GenAImodelscantransformdataforotherMLsystemstoimprovefaultdetectioninautonomoussystems.Forexample,VAEscanhelpcompressoperationaldataintomoreefficientrepresentationsforlongshort-termmemorynetworks(LSTN),atypeofrecurrentneuralnetwork
.23
Spatio-temporaltransformernetworkscancapturetrendsanddimensionsacrossdifferenttimescalestoimprovebatteryfaultdiagnosisandfailureprognosis,enhancingpredictivemaintenanceforUAVs.Forexample,theBERTerysystemcanspotsubtlechanges(changesinvisibletoearlierMLtechniques)thatsignalimpendingbatteryfailureasmuchas24hoursbeforethebatteriesfail
.24
GANshavebeenusedtogeneratetrainingsamplesandbuildinferencenetworksforaircraft-enginemonitoringdatatoimprovefailurepredictionsofotherMLalgorithms
.25
ResearchershavecombinedVAEsandLSTMtosupportcontinuouslearningfromvehiclesensordata,generatingsyntheticdataforwiderrangesoffaultscenarios.BytrainingotherMLalgorithmsonthiskindofsyntheticdata,Sadhuetal.achieved90%accuracyindetectingfaultsand99%accuracyinclassifyingthem.
Demandsforcomputingpowerandrelativelyslowexecutionspeedaretopconcernswhenrunningthesekindsofalgorithmsonlow-costhardware.OnesolutionistoportthecomputationstoFPGAs,whicharemorepower-efficientthanGPUs.ThisishowSadhuetal.achieveda40xspeedup(athalfthepowerconsumption)fortheirVAE-LSTMfaultdetectionalgorithm
.26
VAEscanalsobeusedtotrainmodelsthatidentifynormaloperation.Usingthistechnique,Dhakletal.achieveda95.6%accuracyindetectingdeviationsindicativeoffaultsandanomaliesnotrepresentedinthetrainingdataset
.27
Whenaproblemarisesinadroneoritscommunicationsnetwork,thedronemustlandsafelytoavoidsecondarydamage.Tominimizethisrisk,MonteCarloalgorithmshavebeenusedtocalculate“targetlevelsofsafety”(levelsofacceptablerisk)forvariouslandingzones
.28
Techniqueslikethiscouldbecombinedwithtransformerstomakecontext-awaredecisionswhenafaultforcesaUAVsystemtoselectanappropriatelandingzone.
Inthefuture,itmayalsobepossibletouseGenAItechniquesliketransformerstoletsystemsself-healinresponsetohardwarefailures,softwarebugs,ornetworkdisruption.Forexample,Khlaisamniangetal.haveproposedaframeworkforusingGenAItodetectanomalies,generatecode,debugit,andcreatereportsoncomputersystems
.29
Althoughstillinitsearlystages,thiswo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 盐城江苏盐城市大丰区住房和城乡建设局招聘劳务派遣工作人员4人笔试历年参考题库附带答案详解
- 滁州2025年安徽滁州来安县司法局招聘5名司法协理员笔试历年参考题库附带答案详解
- 湖北2025年湖北理工学院专项招聘97人笔试历年参考题库附带答案详解
- 2025年中国五矿机械市场调查研究报告
- 2025年胶水增稠剂项目可行性研究报告
- 2025至2031年中国纸手帕行业投资前景及策略咨询研究报告
- 2025年液压基础件项目可行性研究报告
- 2025至2031年中国海水用柱塞泵行业投资前景及策略咨询研究报告
- 2025年无针密闭输液接头项目可行性研究报告
- 怀化2024年湖南怀化市文联所属事业单位选调笔试历年参考题库附带答案详解
- 数学-河南省三门峡市2024-2025学年高二上学期1月期末调研考试试题和答案
- 2025年春新人教版数学七年级下册教学课件
- 《心脏血管的解剖》课件
- 心肺复苏课件2024
- 2024-2030年中国并购基金行业发展前景预测及投资策略研究报告
- 河道清淤安全培训课件
- 2024各科普通高中课程标准
- 7.3.1印度(第1课时)七年级地理下册(人教版)
- 教师培训校园安全
- 北师大版语文四年级下册全册教案
- 《湖南师范大学》课件
评论
0/150
提交评论