2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-TII_第1页
2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-TII_第2页
2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-TII_第3页
2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-TII_第4页
2024利用生成式AI增强自主系统的安全性和韧性白皮书(英文版)-TII_第5页
已阅读5页,还剩72页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

nsttut

EnhancingSecurity,Resilience,andSafetyofAutonomousSystemswithGenerativeAI

tii.ae

TableofContents

Sidebar:GenAImodels

4

GenAIUseCases

9

IndividualApplications

9

Self-Awareness

10

Anomalydetection

11

Autonomy

12

Adaptability

12

Predictivemaintenance

13

Faultmanagement

14

Fleet

16

Swarmintelligence

17

Swarmcoordination

19

Communicationresilience

21

Consensus

22

Human

23

Missionplanningandexecution

24

Human-machineteaming

25

Meta-learning

26

Datalabelingandsynthesis

27

Cybersecurity

28

Malwaredetection

29

Intrusiondetection:

31

Integratingthreatintelligence33

Policymanagement33

ThreatSimulation:34

Softwaresupplychainvisibility34

Challenges34

Cost35

Compute36

Adaptation36

Ethical/Regulatory36

Alignment36

Privacy36

Accuracy37

Size37

Newsecurityissues38

Conclusion38

Glossary41

sttut

Rapidadvancesinautonomoussystemsandedgeroboticshaveunlockedunprecedentedopportunitiesinindustriesfrommanufacturingandtransportationtohealthcareandexploration.Increasingcomplexityandconnectivityhavealsointroducednewchallengesinensuringsecurity,resilience,andsafety.Asedgerobotsintegrateintoourdailylivesandcriticalinfrastructures,itisimperativethatwedevelopinnovativeapproachesthatcanraisethesesystems’trustworthinessandreliabilitytonewlevels.

ThiswhitepaperexploresthetransformativepotentialofgenerativeAI(GenAI)toenhancethesecurity,resilience,andsafetyofautonomoussystemsandedgerobots.Wecanusethesecutting-edgetechnologiestomeettheuniquedistributedanddynamicchallengesofedgerobotics,tounlocknewlevelsofintelligence,adaptability,androbustness.

GenAImodelsproducenewcontentbyanalyzingpatternsinadataset.Theyderivecharacteristicprobabilitydistributionsandapplythesetocreatenewdatapatternsthatareconsistentwiththeoriginal“real”dataset.

EarliergenerationsofdiscriminativeAImodelsappliedconditionalprobabilitiestopredictoutcomesforpreviouslyunseendata.Theapproachisversatileandwell-suitedtoawiderangeofproblems,includingclassificationsandregressions.Theyexcelatdelineatingthedecisionboundariesthatdifferentiatebetweenvariousclassesorcategorieswithinthedataset.

Thegrowingranksofgenerativetechniquesincludethosebasedontransformersandtheresultinglargelanguagemodels(LLMs),GenerativeAdversarialNetworks(GANs),VariationalAutoencoders(VAEs),GenerativeFlowModels(GFM),andGenerativeDiffusionModels(GDM).ThesehaveallopenedexcitingnewavenuesofAIresearch—withapplicationstodroneswarmsandintrusiondetection,physicalcommunicationsecurity,semanticcommunication,andmobilenetworks

.1

TheTechnologyInnovationInstitute’sSecureSystemsResearchCenter(TII-SSRC,AbuDhabi,UAE,

https://www.tii.ae/secure-systems)

isworkingtoapplyGenAItoitsworkextendingZeroTrustarchitectures(developedforinformationsecurity)toeveryaspectofinformationsecurityincyber-physicalsystems.

Thus,SSRCconsidershowGenAIcanhelpguaranteesecurity,resilience,andsafetyfordrones,swarms,swarmsofswarms,autonomousterrestrialandmarinevehicles,commandsystems,andhuman/droneinteractions—andparticularlyinareaswhereGenAIoutperformstraditionalAI/MLapproaches.

Examplesinclude:

•Individualapplications:healthmonitoring,stateestimation,predictivemaintenance,anomalydetection,self-healing,navigation,andemergencylandings.

•Fleetapplications:Swarmcoordination,swarmintelligence,collectivedecision-making.

•Human/Droneinteractions:communicationresilience,missionplanning,human-computerinteraction.

•Cybersecurityandresilience:Intrusiondetection,malwareclassification,threatsimulation.

ThispaperwillfocusondronesbecauseSSRCisdoingsomuchworkinthisarea.Whatwelearnfromdronescanbeappliedmuchmoretoautonomousandcyber-physicalsystemsingeneral,includingcars,robots,embeddedsystems,andsmartcities.Bythesametoken,

lessonslearnedintheseareascanbefoldedintoSSRC’sresearch.

approachallowsorganizationstomoveawayfromphysicaldevicemanagementapproachesthatrequireemployeestocarrymultiplephones.

1M.Xuetal.,“UnleashingthePowerofEdge-CloudGenerativeAIinMobileNetworks:ASurveyofAIGCServices.”arXiv,Oct.31,2023.

doi:10.48550/arXiv.2303.16129

Sidebar:GenAImodels

AsurveyofspecificgenerativeAImodelingtechniques,withtheirstrengthsandlimitationsasappliedtodronesafety,security,andresilience.

PopularexcitementovergenerativeAImodelshasbeendrivenbyhighlypublicizednewserviceslikeChatGPT,whichcreateauthoritative-soundingresponsestotextpromptsusingspeciallytrainedLLMs.

LargeLanguageModelsareAIsystemstrainedonvasttextdatasets.TheyuseDeepLearningtechniques,particularlyastructureknownasaTransformer,to“understand”andgeneratehuman-liketextbasedonthepatternsthey'velearned.LLMsanalyzetherelationshipsandcontextsinthetrainingdata.Theyuseavarietyoftechniquestobuildsimplifiedrepresentationsofthedata,allowingthemtomakeassociationsandcorrelationsbetweentheoriginaldataelements.Thesemodelsletthemcomposeresponsesthatcanmimichumanwritingstylesandcoverdiversetopics.VisualAIs,likeDALL-EandStableDiffusion,compilenewimagesfromtextandimageprompts.

LLMsarewidelyused,andwidelyuseful,increatingcontent,code,translations,summaries,syntheticdata,andtostructureunstructureddatafromtexts,documents,images,audio,andotherpromptdata.

Transformermodelsandtheservicesbuiltonthem—likeOpenAI’sChatGPT,Google’sGemini,andAnthropic’sClaude—haveattractedwidespreadattention,thankstotheirimpressiveabilitytocreatearticulate-seemingresponsestohumanprompts.These,andotherdomain-specificLLMsandSmallLanguageModels(SMLs),alsoshowpromiseforsupportinganalysis,research,anddevelopmenttoimprovedronesafety,securityandresilience.

ParallelingtheseveryvisibleAIdevelopments,however,hasbeenalmostadecadeofprogressonnewclassesofGenerativeAImodelscouldautomateandacceleraterepresentation-building.Whilegenerativeapplicationsattractthemostattentions,thesenewmodelsalsoaredrivingadvancesinanalyzingdataandinteractingwiththeworldaroundus.OthergenerativeAImodels—GenerativeAdversarialNetworks,VariationalAutoencoders,GenerativeDiffusionModels,andNormalizingFlowModels—thoughrelativelyunknown,canmakesubstantialcontributionstodronesecurity,safety,andresilience.

TransformerModels:Introducedin2017totranslatebetweenEnglishandFrenchtexts,TransformerModelsexcelatcapturinglong-rangedependenciesandcorrelationswithinunstructureddata

.2

Transformersleverageanovel“attentionmechanism”tolearntheconnectionsbetweenwordstohelpcreateembeddingsautomatically.Priortechniquesrequiredtranslatingrawtextintoavectorrepresentationusingaseparatemodel.Transformerscanbuildcomplexrepresentationsandlearnintricateconnectionsthroughtheirlayeredarchitecture,manner.,allowingresearcherstoprocesslargebodiesofunlabeledtextanddeveloplargelanguagemodelswithbillionsofparameters.Subsequentinnovationshavesupporteddocumentsummarization,composingquestion/answerassociationsacrosslargedatasets,codegeneration,in-depthanalysis,intrusiondetection,malwaredetection,andtranslatingcontrolsysteminstructionsacrossroboticarms.Theapproach’skeyadvantageisdistillingcontextfromcomplexdatasets.Challengesincludehallucination,longertrainingtime,slowerinference-building,heaviercomputationrequirements,andlargermodelsizescomparedtoothertechniques.

2A.Vaswanietal.,“AttentionIsAllYouNeed.”arXiv,Aug.01,2023.

doi:10.48550/arXiv.1706.03762.

GenerativeAdversarialNetworks(GANs):Theseweredevelopedin2014tocreaterealisticsyntheticnumbers,faces,andanimalimages

.3

GANspittwoneuralnetworksagainsteachother:oneisrewardedforgeneratingmorerealisticcontent,andthesecondisrewardedfordetectingfakecontent.Inthiscompetition,thegeneratorimprovesitsabilitytocreaterealisticoutputsthatcanfoolthediscriminator.GANsarewidelyusedincontentgeneration.Sincethefirstversionsweredesignedtoworkwithimages,researchersarenowfindingcreativewaystotranslatedata,suchascodeornetworklogs,intoimagessuitableforGANprocessing.GANsaregoodforrealisticsyntheticdatasetsthatcanbeusedtoimproveautonomoussystemsandcybersecurityalgorithms.They,too,however,sufferfromfailureslikemodecollapseorcatastrophicforgetting.

3I.J.Goodfellowetal.,“GenerativeAdversarialNetworks.”arXiv,Jun.10,2014.doi:10.48550/arXiv.1406.2661.

VariationalAutoencoder(VAE):VAEswereintroducedin2014toimproveinferencesdrawnfromacontinuouslyvaryingdatastream

.4

Thetechniquehelpsfindefficientwaystorepresentdataandcanbeusedtocompressdataordetectanomaliesandthreats.TrainingVAEsprocessinvolvesteachingasetofencodersanddecoderstotranslaterawdataintoanintermediatelatentspacewithadifferentprobabilitydistribution.VAEscanbeusedindependentlyinapplicationslikeanomalydetection,designingbetterencodingschemes,dataaugmentation,andimagegeneration.Inaddition,theyareoftenusedtopre-structuredataforotheralgorithms,includingGANs,toimprovetheirresults.

GenerativeDiffusionModel(GDF):GDFsemergedin2015toimprovelearning,sampling,inferences,andevaluationsthatwereinformedbynon-equilibriumthermodynamicsmodeling

.5

Thetechniqueaddsnoisetoasample(suchasanimage)andthenautomatesthedenoisingprocesstorevealthedata’sunderlyingstructure.Slightvariationscanleadtovalidnewtrainingdatasets.GDFsarewidelyusedinimagegenerationandcanimprovesignalclassificationinvariousdroneusecases.However,thetechniquerequireshighersamplingtimesanddemandsamorecomplexarchitecturethanGANsandVAEs.

NormalizingFlowModels(NFMs):Thesewereintroducedbyresearcherstomakecomplexdatasimplertoworkwith

.6

Thesemodelstakeeasy-to-understanddistributions,likeanormalbellcurve,andtransformthemstepbystep.Eachstepisreversible,meaningwecanalwaysgobacktothestartifneeded.Thisprocess,calleda“flow,”movesfromasimplebeginningtoanendthat

4D.P.KingmaandM.Welling,“Auto-EncodingVariationalBayes.”arXiv,Dec.10,2022.doi:10.48550/arXiv.1312.6114.

5Yang,Ling,etal."Diffusionmodels:Acomprehensivesurveyofmethodsandapplications."ACMComputingSurveys56.4(2023):1-39.

/doi/10.1145/3626235

6Kobyzev,Ivan,SimonJDPrince,andMarcusA.Brubaker."Normalizingflows:Anintroductionandreviewofcurrentmethods."IEEEtransactionsonpatternanalysisandmachineintelligence43.11(2020):3964-3979.

/abstract/document/9089305/authors

resemblesthecomplicatedtargetdataset.Bydoingthis,itispossibletostudyandusethedatamoreeffectively.NFMshavebeenusedtogeneratehandwrittennumbers,images,etc.Newerusecasesincludeenhancedclassificationandencodingschemes.Thetrainingprocesscreatesamodelthattransformstheprobabilitydistributionofadatasetintoamorecomplex,fullyreversibledistribution.NFMscan,however,requirehighercomputationandtrainingtimesthantechniqueslikeGANsandVAEs.

ThefollowingfiguresummarizesthemainGenAITechniquesandtheirapplicationsinthefieldofZeroTrustforautonomoussystems.

GenAIUseCases

Theproliferationofdrone-technologyhasbroughtchallengesthatspancrossbetweendomains—individual,fleet,humancontrol,andcybersecurity.Theirgrowthandcomplexitydemandconstantinnovationtoredoubletheirtrustworthinessandreliability.

Thefollowingapplications—whetherderivedfromUnmannedAerialVehicle(UAV)anddroneresearchorimportedfromotherdomains—haveimportantimplicationsforthefutureofUAVsandotherautonomoussystems.Note,too,thatmanyoftheseareearly-stageprojects,includedtogiveaflavorwhatGenAItoolsmightaccomplishastechniquesevolve.

GenAIshowstremendouspotentialforimprovingZeroTrustframeworkstoenhancesecurity,resilience,andsafetyinindividualautonomoussystems,suchasdrones,self-drivingcars,

robots,andembeddedsystems.Usecasesunderinvestigationincludeboostingself-

awareness,anomalydetection,autonomousdriving,predictivemaintenance,faultmanagement,self-healing,andlandingsafely.

Self-Awareness

Opportunity:Efficientlytranslatenoisy,blurry,andinconsistentdatatounderstandthedrone'scurrentstate—e.g.,compensatingformotionblurwhiletryingtodetectobstacles.

Thefoundationofdronehealthisaccuratelycapturingandmakingsenseofitscurrentstate—includingtheconditionofitscurrenthardware,itsapplications,itsphysicallocation,anditssecurityposture.Intherealworld,thiscangetmessy,asvideofeedssuffermotionblur,GPSdatajitters,inertialguidancedatalosecalibration,andnoiseorgapsdegradeinternalmonitoringdata.

Stateestimationiscrucialtoautonomousnavigationanddecision-making,andrawdatastreamsmustbeaccuratelycorrelatedwithposition,velocity,andorientation

.7

GenerativeAIcanhelpfillinmissingdataandfusedatafrommultiplesourcestoimprovestateestimation

.8

InnovationsinGenAIalgorithmslikeGANs,VAEs,andtraditionalMLalgorithmslikeLSTMcanfillinthesegaps,preservingvehiclesafetyviafaultdetection,predictivemaintenance,faultmanagementandsafe-landingprotocols.Forexample,innovativeGANapproachescanfillinmissingdataandmakeiteasiertofusedatastreamstocreateamoreaccuratestateassessment

,9

helpcorrelateinternallogdatawithacousticanalysis

,10

andidentifypotentialmechanicalissues

.11

Researchershavealsodevelopedtechniquesforgeneratingestimated-statevariablesusingConditionalGANs(CGANs)forindividualdronesanddroneswarms

.12

7T.D.Barfoot,Stateestimationforrobotics.CambridgeUniversityPress,2017.

8Liu,Guangyuan,NguyenVanHuynh,HongyangDu,DinhThaiHoang,DusitNiyato,KunZhu,JiawenKang,ZehuiXiong,AbbasJamalipour,andDongInKim.“GenerativeAIforUnmannedVehicleSwarms:Challenges,ApplicationsandOpportunities.”arXiv,February28,2024.

/10.48550/arXiv.2402.18062.

9Y.He,S.Chai,andZ.Xu,"Anovelapproachforstateestimationusinggenerativeadversarialnetwork,"in2019IEEEInternationalConferenceonSystems,ManandCybernetics(SMC),2019,pp.2248-2253.

/document/8914585

10Y.Wang,A.Vinogradov,“ImprovingtheperformanceofconvolutionalGANusinghistory-stateensembleforunsupervisedearlyfaultdetectionwithacousticemissionsignalsAppl.Sci.,13(5)(2023),p.3136,doi:10.3390/APP13053136

11S.Zheng,A.Farahat,andC.Gupta,“GenerativeAdversarialNetworksforFailurePrediction.”arXiv,Oct.04,2019.Accessed:Mar.15,2024.[Online].Available:

/abs/

1910.02034

12.A.He,C.Luo,X.Tian,andW.Zeng,"AtwofoldSiamesenetworkforreal-timeobjecttracking,"inProceedingsoftheIEEEconferenceoncomputervisionandpatternrecognition,2018,pp.4834-4843.

/document/8578606

Anomalydetection

Opportunity:Improveanalysisofdronesensordatatoidentifyabnormalconditions.

Moreaccurate,multi-dimensionalsystem-staterecordscanalsohelpidentifyanomaliesrelevanttodronehealth.Forexample,VAEscanimprovefaultdetectionandisolation.Theycanalsoidentifythewarningsignsofstressinvarioussystems,toprioritizepredictivemaintenanceschedules.Typically,machine-learningclassificationalgorithmsaretrainedonmultipleclasses(suchasdatatagged“faulty”and“notfaulty”).Dataonrarerclasses,suchas“faulty”data,isoftenscarceinpublicdatasetsandtherealworld.Inthesecases,GenerativeAdversarialNetworks(GANs)canbevaluableinsynthesizingtheserareclasses—makingup“faulty”datathatlooks

conditions.Inaddition,researchersareexploringhowLLMscouldhelpbettercontextualizetooperateinnewenvironments

.13

Forexample,DriveLLMcombinesLLMwithtraditionalautonomousnavigationalgorithmstosupportbetterreasoninganddecision-makingwhenrespondingtoedgecases

.14

Researchersfoundthemethodcouldimproveproactivedecision-makinginunexpectedcircumstances.Anotherapplication,TypeFly,enhancescommunicationbetweenhumansanddronesthroughanaturallanguageinterfac

e15.

Suchlargelanguagemodelsmay,however,manifestsurfacebias,inaccuracies,and

hallucinationissuesthatrequireadditionalsafeguards.Similarly,MicrosoftResearchdiscussestheiradvancementsinintegratingChatGPTwithroboticstomakerobotcontrolmoreintuitive

throughnaturallanguage.They'veenabledChatGPTtounderstandandexecutetasksin

physicalenvironments,whichfacilitateseasierhuman-robotinteractionwithouttheneedfor

complexprogrammingknowledge.TheChatGPTteamhasdevelopeddesignprinciplesfor

languagemodelstosolveroboticstasks(involvingspecialpromptingstructuresandhigh-levelAPIs),andtheyhavedemonstratedhowChatGPTcanhandletaskslikeoperatingdronesandrobotarmsthroughuser-friendlycommandsandfeedback.Thedevelopersemphasizethe

importanceofsafetyandsimulationtestingbeforereal-worldapplication

.16

Adaptability

Opportunity:Improvetranslationofautonomoussystemssoftwaretorunacrossdifferenthardwaremakes,models,andconfigurations.

Autonomoussystemcontrollersmustbetrainedforaspecificmodelandconfiguration.Thiscancreatechallengeswhenupgradingindividualcomponentsoradoptingnewmodels.RTXisarobotcontrolLLMthatcantranslatecontrolpoliciestomanagedifferentroboticarmswithoutrefactoringthecontrolalgorithmsforthelatesthardware.Insometests,leveragingtheexperienceofothercontrollers,producedcontrolpoliciestheoutperformedthebestcontrolscustom-builtforanindividualarm

.17

13Wang,Lei,etal."Asurveyonlargelanguagemodelbasedautonomousagents."FrontiersofComputerScience18.6(2024):1-26.

/article/10.1007/s11704-024-40231-1

14Y.Cuietal.,“DriveLLM:ChartingthePathTowardFullAutonomousDrivingWithLargeLanguageModels,”IEEETransactionsonIntelligentVehicles,vol.9,no.1,pp.1450–1464,Jan.2024,doi:10.1109/TIV.2023.3327715.

15Chen,Guojun,XiaojingYu,andLinZhong."TypeFly:FlyingDroneswithLargeLanguageModel."arXivpreprintarXiv:2312.14950(2023).

/pdf/2312.14950

16Vemprala,Sai,etal."Chatgptforrobotics:Designprinciplesandmodelabilities."arXivpreprintarXiv:2306.17582(2023).

/abs/2306.17582

17O.X.-E.Collaborationetal.,“OpenX-Embodiment:RoboticLearningDatasetsandRT-XModels.”arXiv,Dec.17,2023.doi:10.48550/arXiv.2310.08864.

EarlyLLMs,likeGPT3.5,weretrainedonlargebodiesoftextscrapedfromtheInternet.Thesemodelslackedreal-worldexperiencethatcouldreflecthowvariousconfigurationsofrobotsandotherautonomoussystemsmakeandexecutedecisions.Researchintoroboticaffordancesexploreshowtoconstraineachrobotmodeltoactionsthatarefeasibleandappropriatefortheircapabilities

.18

ThisprovidesaframeworkforguidingLLMdevelopmentbasedonmorecompleteknowledgeofanoperationorprocedure.Atthesametime,thegroundingfunctiontranslatesthishigh-levelknowledgeintoexecutionbyaparticularrobotmodelinaspecifictargetenvironment.

Predictivemaintenance

Opportunity:Predictthependingbreakdownofdronecomponentstooptimizemaintenance,repair,andpart-replacementschedules.

Properlyrecordedandanalyzed,thedrone’ssensorandoperationaldatarevealimpendingmechanicalproblemsbeforebreakdownsoccur.Predictivealgorithmsletmaintenanceandrepaircrewsestablishregularschedules,prioritizemaintenance,andstayaheadofpartsinventories.Withadvancenoticeandplanning,evenmajorrepairsandreplacementscanbeperformedduringroutineservice.Theprobabilitiesofcostlybreakdownsand,worse,catastrophicfailuresdropsharply.Partscanbereplacedjust-before-needed,withservicelifecalculatedasafunctionofinstalled-partquality,servicetime,andoperationalprofile—slashingthecostsofreplacingperfectlysoundpartsonafixedschedule.

TraditionalMLalgorithmsoftenlieattheheartofpredictivemaintenance.Forexample,metricslikeRemainingUsefulLife(RUL)andHealthIndicatorscanidentifymotoranomalies.ButsyntheticdatageneratedbyGANsandotherGenAIalgorithmscanimprovethealgorithms’performance.

MultipleMLtechniques,includingGenAIalgorithms,canbecombinedtoimprovefaultdiagnosisandpredictivemaintenanceworkflows

.19

Forexample,GANtechniqueshavebeenappliedtoacousticsignalsfrommachinerytoidentifyandpredictfaultsnotidentifiedbyothermethods

.20

GANshavealsobeenusedtogeneratesyntheticmonitoring-datasetstohelptrainotherMLalgorithmstoimprovefailure-predictionandoptimizemaintenanceschedules

.21

GAN-FP,geneticadversarialnetworksforfailureprediction,specializeingenerating,balancing,andlabelingtrainingdatatoimproveperformanceofotherMLalgorithm

s22.

Faultmanagement

Opportunity:Identifyfaults,makedynamicadjustments,andeffectasafelandingwhenrequired.

18M.Ahnetal.,“DoAsICan,NotAsISay:GroundingLanguageinRoboticAffordances.”arXiv,Aug.16,2022.Accessed:Mar.21,2024.[Online].Available:

/abs/2204.01691

19Z.Mianetal.,“Aliteraturereviewoffaultdiagnosisbasedonensemblelearning,”EngineeringApplicationsofArtificialIntelligence,vol.127,p.107357,Jan.2024,doi:10.1016/j.engappai.2023.107357.

20Y.Wang,A.VinogradovImprovingtheperformanceofconvolutionalGANusinghistory-stateensembleforunsupervisedearlyfaultdetectionwithacousticemissionsignalsAppl.Sci.,13(5)(2023),p.3136,10.3390/APP13053136

21Q.Fu,H.Wang,J.Zhao,andX.Yan,“AMaintenance-predictionMethodforAircraftEnginesusingGenerativeAdversarialNetworks,”in2019IEEE5thInternationalConferenceonComputerandCommunications(ICCC),Dec.2019,pp.225–229.doi:10.1109/ICCC47050.2019.9064184.

22S.Zheng,A.Farahat,andC.Gupta,“GenerativeAdversarialNetworksforFailurePrediction.”arXiv,Oct.04,2019.Accessed:Mar.15,2024.[Online].Available:

/abs/1910.02034

GenAImodelscantransformdataforotherMLsystemstoimprovefaultdetectioninautonomoussystems.Forexample,VAEscanhelpcompressoperationaldataintomoreefficientrepresentationsforlongshort-termmemorynetworks(LSTN),atypeofrecurrentneuralnetwork

.23

Spatio-temporaltransformernetworkscancapturetrendsanddimensionsacrossdifferenttimescalestoimprovebatteryfaultdiagnosisandfailureprognosis,enhancingpredictivemaintenanceforUAVs.Forexample,theBERTerysystemcanspotsubtlechanges(changesinvisibletoearlierMLtechniques)thatsignalimpendingbatteryfailureasmuchas24hoursbeforethebatteriesfail

.24

GANshavebeenusedtogeneratetrainingsamplesandbuildinferencenetworksforaircraft-enginemonitoringdatatoimprovefailurepredictionsofotherMLalgorithms

.25

ResearchershavecombinedVAEsandLSTMtosupportcontinuouslearningfromvehiclesensordata,generatingsyntheticdataforwiderrangesoffaultscenarios.BytrainingotherMLalgorithmsonthiskindofsyntheticdata,Sadhuetal.achieved90%accuracyindetectingfaultsand99%accuracyinclassifyingthem.

Demandsforcomputingpowerandrelativelyslowexecutionspeedaretopconcernswhenrunningthesekindsofalgorithmsonlow-costhardware.OnesolutionistoportthecomputationstoFPGAs,whicharemorepower-efficientthanGPUs.ThisishowSadhuetal.achieveda40xspeedup(athalfthepowerconsumption)fortheirVAE-LSTMfaultdetectionalgorithm

.26

VAEscanalsobeusedtotrainmodelsthatidentifynormaloperation.Usingthistechnique,Dhakletal.achieveda95.6%accuracyindetectingdeviationsindicativeoffaultsandanomaliesnotrepresentedinthetrainingdataset

.27

Whenaproblemarisesinadroneoritscommunicationsnetwork,thedronemustlandsafelytoavoidsecondarydamage.Tominimizethisrisk,MonteCarloalgorithmshavebeenusedtocalculate“targetlevelsofsafety”(levelsofacceptablerisk)forvariouslandingzones

.28

Techniqueslikethiscouldbecombinedwithtransformerstomakecontext-awaredecisionswhenafaultforcesaUAVsystemtoselectanappropriatelandingzone.

Inthefuture,itmayalsobepossibletouseGenAItechniquesliketransformerstoletsystemsself-healinresponsetohardwarefailures,softwarebugs,ornetworkdisruption.Forexample,Khlaisamniangetal.haveproposedaframeworkforusingGenAItodetectanomalies,generatecode,debugit,andcreatereportsoncomputersystems

.29

Althoughstillinitsearlystages,thiswo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论