中国石油大学(北京)《商业美术插图》2023-2024学年第一学期期末试卷_第1页
中国石油大学(北京)《商业美术插图》2023-2024学年第一学期期末试卷_第2页
中国石油大学(北京)《商业美术插图》2023-2024学年第一学期期末试卷_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

站名:站名:年级专业:姓名:学号:凡年级专业、姓名、学号错写、漏写或字迹不清者,成绩按零分记。…………密………………封………………线…………第1页,共1页中国石油大学(北京)

《商业美术插图》2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的图像修复旨在恢复图像中缺失或损坏的部分。假设一张珍贵的老照片有部分区域损坏,需要进行修复以还原其完整的内容。以下哪种图像修复方法在处理这种情况时能够生成更自然和逼真的结果?()A.基于扩散的图像修复B.基于纹理合成的图像修复C.基于深度学习的图像修复D.基于样例的图像修复2、在计算机视觉的图像检索任务中,根据用户的需求从图像数据库中查找相关图像。假设要从一个大型的图像库中检索包含特定物体的图像,以下关于图像检索方法的描述,哪一项是不正确的?()A.可以基于图像的内容特征,如颜色、形状和纹理等,进行相似性度量和检索B.深度学习模型能够提取更具语义和判别力的特征,提高图像检索的准确性C.图像检索的结果只取决于图像的特征表示,与检索算法的效率无关D.可以结合用户的反馈和交互,不断优化图像检索的结果3、在计算机视觉中,图像超分辨率重建是提高图像分辨率和质量的技术。以下关于图像超分辨率重建的叙述,不正确的是()A.图像超分辨率重建可以通过插值、基于模型的方法或深度学习方法来实现B.深度学习方法在图像超分辨率重建中能够生成更清晰、逼真的细节C.图像超分辨率重建在医学图像、卫星图像和监控图像等领域有重要的应用D.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制4、在计算机视觉的应用于自动驾驶领域,需要实时检测道路上的交通标志和标线。假设车辆在高速行驶中,以下哪种技术能够快速准确地检测到各种交通标志,并且对光照变化和遮挡具有较强的鲁棒性?()A.基于颜色和形状特征的检测方法B.基于深度学习的检测方法,结合多尺度特征C.基于边缘检测和形态学操作的方法D.基于模板匹配和特征点匹配的方法5、当进行图像的去雾处理时,假设要去除图像中由于雾气导致的模糊和低对比度。以下哪种方法可能更有效?()A.基于物理模型的去雾方法,估计大气光和透射率B.对图像进行简单的对比度增强C.不进行去雾处理,保留有雾的效果D.随机调整图像的亮度和饱和度6、计算机视觉中的语义分割任务旨在为图像中的每个像素分配一个类别标签。假设要对医学图像中的病变区域进行精确分割,以下哪种技术可能对提高分割精度有较大帮助?()A.使用更深的卷积神经网络架构B.引入多尺度特征融合C.增加训练数据中的噪声D.减少网络中的参数数量7、在计算机视觉的姿态估计任务中,需要确定物体在三维空间中的方向和位置。假设我们要估计一个机器人手臂的姿态,以下哪种技术通常被用于获取准确的姿态信息?()A.基于视觉标记的姿态估计B.基于深度学习的姿态估计C.基于几何约束的姿态估计D.基于惯性测量单元(IMU)的姿态估计8、在计算机视觉的视频监控系统中,异常事件检测是重要功能之一。假设要在一个仓库的监控视频中检测出异常的人员活动或物品移动。以下哪种异常事件检测方法在处理这种大规模视频数据时能够更有效地发现异常?()A.基于规则的检测B.基于统计模型的检测C.基于深度学习的检测D.基于人工观察的检测9、在计算机视觉的目标跟踪任务中,需要在连续的图像帧中持续跟踪一个特定的目标。假设要跟踪一个在运动场上快速移动且形状变化的运动员,同时存在其他相似物体的干扰。以下哪种目标跟踪算法在这种具有挑战性的场景下表现更佳?()A.基于卡尔曼滤波的跟踪B.基于粒子滤波的跟踪C.基于深度学习的跟踪D.基于均值漂移的跟踪10、当进行图像的显著性检测时,假设要从一张复杂的图像中突出显示出人们视觉上最关注的区域,例如在一张风景图像中突出显示出一座显眼的山峰。以下哪种方法在计算图像的显著性时可能更准确?()A.基于频率域分析的方法,计算图像的频谱特征B.基于对比度的方法,比较区域与周围的差异C.随机选择图像中的部分区域作为显著性区域D.不进行任何计算,主观判断显著性区域11、图像检索是计算机视觉的一个重要应用。假设我们要在一个大型图像数据库中快速找到与给定查询图像相似的图像,以下哪种图像表示方法可能对提高检索效率有帮助?()A.全局特征表示B.局部特征表示C.基于深度学习的特征表示D.基于颜色直方图的特征表示12、计算机视觉中的医学图像分析对于疾病的诊断和治疗具有重要意义。以下关于医学图像分析的描述,不准确的是()A.可以对X光、CT、MRI等医学图像进行病灶检测、器官分割和疾病分类B.深度学习技术在医学图像分析中取得了显著的成果,但也面临数据标注困难和模型泛化能力不足的问题C.医学图像分析需要遵循严格的医学标准和伦理规范,确保结果的准确性和可靠性D.医学图像分析完全依赖于计算机视觉技术,医生的经验和专业知识不再重要13、在计算机视觉的车牌识别任务中,需要从车辆图像中准确提取车牌号码。假设车牌存在倾斜、变形和光照不均等问题。以下哪种车牌识别方法在应对这些挑战时表现更为出色?()A.基于字符分割的车牌识别B.基于模板匹配的车牌识别C.基于深度学习的车牌识别D.基于特征提取的车牌识别14、在计算机视觉的文本检测和识别任务中,假设要从一张图片中提取并识别其中的文字信息。以下关于文本检测和识别的描述,哪一项是不正确的?()A.可以先通过文本检测算法定位图片中的文本区域,然后进行识别B.深度学习中的卷积神经网络在文本识别中表现出色,能够准确识别各种字体和风格的文字C.文本检测和识别对于弯曲、倾斜和模糊的文字能够轻松应对,没有任何困难D.可以结合光学字符识别(OCR)技术,将图片中的文字转换为可编辑的文本15、计算机视觉中的全景图像拼接是将多个视角的图像组合成一个全景图像。假设我们有一组用普通相机拍摄的场景照片,要拼接成一个无缝的全景图,以下哪个步骤对于拼接的质量影响最大?()A.特征点提取和匹配B.图像融合和过渡处理C.相机参数估计和校正D.图像的裁剪和缩放二、简答题(本大题共3个小题,共15分)1、(本题5分)解释计算机视觉中的车牌识别技术。2、(本题5分)描述计算机视觉在海洋工程监测中的应用。3、(本题5分)简述计算机视觉在玩具制造中的应用。三、应用题(本大题共5个小题,共25分)1、(本题5分)使用目标跟踪算法,跟踪演唱会观众的情绪变化。2、(本题5分)使用目标跟踪算法,跟踪武术表演中运动员的动作轨迹。3、(本题5分)利用图像分割技术,从脑电图中分割出癫痫发作波段。4、(本题5分)对电影中的镜头语言和叙事节奏进行基于计算机视觉的分析。5、(本题5分)基于深度学习的图像生成模型,生成具有特定风格的艺术图像。四、分析题(本大题共3个小题,共30分)1、(本题10分)分析某音乐专辑的封面设计,探讨其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论